A Note on Subloops of a Homogeneous Lie Loop and

Subsystems of its Lie Triple Algebra

Michihiko KIKKAWA (Received May 10, 1975)

Introduction

In our previous paper [3], we have introduced a concept of a geodesic homogeneous Lie loop G which is a generalization of the concept of Lie groups, and shown that the tangent space \mathfrak{G} at the identity of G forms a Lie triple algebra under the operations defined by the torsion and curvature tensors of the canonical connection of G, and that \mathfrak{G} characterizes locally the homogeneous Lie loop G (cf. [3, Definitions 3.1, 3.5 and Theorems 7.2, 7.3, 7.8]).

In this paper, we observe the correspondence between the set of Lie subloops of G and the set of subsystems¹⁾ of \mathfrak{G} , and show the following main theorem:

THEOREM 1. Let G be a connected geodesic homogeneous Lie loop and \mathfrak{G} its Lie triple algebra. Then, for any connected left invariant Lie subloop H of G, the Lie triple algebra \mathfrak{H} of H is a left invariant subsystem of \mathfrak{G} .

Conversely, for any left invariant subsystem \mathfrak{H} of \mathfrak{G} , there exists a unique connected left invariant Lie subloop H of G whose Lie triple algebra is \mathfrak{H} .

Here, we call a subloop H of G (resp. subsystem \mathfrak{H} of \mathfrak{G}) left invariant if it is invariant under the left inner mapping group $L_0(G)$ of G (resp. the group $dL_0(G)$ of linear transformations of \mathfrak{G} induced from $L_0(G)$).

It should be noted that, when G is reduced to a Lie group, the above theorem is reduced to the well known theorem of the correspondence of Lie subgroups of G and Lie subalgebras of the Lie algebra \mathfrak{G} of G.

The notations and terminologies used in this paper are all refered to [3].

§1. Local subloops of a homogeneous Lie loop

To study local subloops of a geodesic local Lie loop in a locally reductive space, we consider its auto-parallel submanifolds. Let M be a differentiable manifold with a linear connection ∇ . A submanifold N of M is called *autoparallel* if, for each vector X tangent to N at any x and for each piecewise differentiable

¹⁾ By a subsystem of a Lie triple algebra G, we mean a subalgebra of G which is closed under the ternary operation of G.