Nonoscillation Generating Delay Terms in Even Order Differential Equations

R. S. DAHIYA

(Received February 4, 1975)

1. Introduction

The study of differential equations with time lag is growing increasingly significant due to technological dependence on physical systems with after effects. Mathematically, such systems [1] are governed by some sort of differential equation with an appropriate delay term which in itself may be a variable quantity. The oscillatory behavior of such equations becomes an interesting phenomenon especially when delay is chiefly responsible for causing oscillations. For example, following Teodorick [20], (also see Norkin [12, pp. 4-6]), the equation

(1)
$$x''(t) + \frac{r}{m}x'(t) + \frac{k}{m}x(t) + \frac{2p}{\pi am}x(t-\Delta) = 0$$

represents the working of an electric hammer of mass m. A study of this system shows that without the delay term Δ , there will be no vibrations.

Results concerning the oscillatory behavior of a wide variety of retarded equations can be found in [2, 3, 5, 9, 10, 13, 16, 19, 21]. However most of these results are such that the delay term does not play any role at all. But an obvious example such as

(2)
$$y''(t) - y(t - \pi) = 0$$

clearly indicates by its solutions $\sin t$ and $\cos t$, that its oscillatory behavior is different from that of the ordinary differential equation

(3)
$$y''(t) - y(t) = 0$$

which is nonoscillatory. This difference in the behavior of equations (2) and (3) is clearly due to the delay term π .

Recently Ladas and Lakshmikantham [10] showed that if p(t)>0, $p'(t)\leq 0$ and $\tau^2 p(t)\geq 2$, then the bounded solutions of the equation

(4)
$$y''(t) - p(t)y(t-\tau) = 0$$

are oscillatory. Taking $p(t) \equiv 1$ and $\tau = 0$, equation (4) reduces to equation (3) which we know is nonoscillatory. Ladas, Ladde and Pappadakis in [9, Theorem