On the Boltzmann Equation for Rough Spherical Molecules with Internal Energy

Hiroshi Murata

(Received September 20, 1975)

§1. Introduction, notations and the results

Consider a system of the same kind of a large number of (say, N) rough elastic spherical molecules with the mass m, the radius a, and the moment of inertia $I = ma^2\kappa$ ($0 \le \kappa \le 2/3$). Such a molecule possesses energy of rotation which is interconvertible with energy of translation. This model was treated by F. B. Pidduck [5] (see also [3]). The motion of a molecule can be specified by a pair (ξ , α), where $\xi \in R^3$ is the velocity of its center and $\alpha \in R^3$ is its angular velocity. The dynamics of a collision is given in the following way: Let (ξ , α) and (η , β) be the velocity pairs after collision of two molecules (ξ' , α') and (η' , β'). Then,

(1.1)
$$\begin{cases} \xi' = \xi + \frac{\kappa V + (\eta - \xi, \ell)\ell}{\kappa + 1}, \\ \eta' = \eta - \frac{\kappa V + (\eta - \xi, \ell)\ell}{\kappa + 1}, \\ \alpha' = \alpha + \frac{\ell \times V}{a(\kappa + 1)}, \\ \beta' = \beta + \frac{\ell \times V}{a(\kappa + 1)}, \end{cases}$$

where ℓ denotes the unit vector in the direction of the line from the center of the molecule (ξ, α) to that of the molecule (η, β) at collision and V the relative velocity, after impact, of the points of the spheres which come into contact, that is,

(1.2)
$$V = \eta - \xi + a \ \ell \times (\alpha + \beta).$$

(In (1.1) and (1.2), (,) and \times denote the inner and the outer product respectively.) Note that this dynamics preserves the linear momentum and the total energy, i.e.,

(1.3)
$$\begin{cases} \xi' + \eta' = \xi + \eta, \\ [\xi', \alpha']^2 + [\eta', \beta']^2 = [\xi, \alpha]^2 + [\eta, \beta]^2, \end{cases}$$

Research partially supported by the Sakkokai Foundation.