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1. Introduction

We consider the following nth order functional differential equations with
deviating argument

M (ra= 1O (ra— 2O (- (r2 () (r Y (D)) Y)Y
+(=D"y(g)F([y(g()]?, 1) = 0,

@ (Fa= 1O (ra—2(O) (- () (rs DY (@)Y )Y
+(= D)1 y(gOF(Ly(g()]?, 1) = O,

(©) (ra= 1O (ra— 2O -+ (r2() (r: (DY (0)))--)Y

+ y(g()F([y(g(t)]>, 1) = 0.
The conditions we always assume for r;, g, F are as follows:
(a) g(1) is continuous on [7, o) and lim g(t)=0;
t— o

(4) (b) each r(t) is continuous and positive on [1, o), and

© dt - .

Sr—r—i(t—)—oo, i=1,...,n—1;

(c) F(z, t) is nonnegative on (0, c0) x [, 00). yF(y?, t) is continuous on
(— oo, ) X% [1, ) and is nondecreasing in y for each t=1.

We restrict our discussion to those solutions y(t) of the above differential
equations which exist on some ray [T,, oo) and satisfy

sup{ly()l: to St < 00} >0

for every to€[T,, ). Such a solution is said to be oscillatory (or to oscillate)
if it has arbitrarily large zeros. Otherwise the solution is said to be nonoscil-
latory.



