Classification of Free Involutions on Surfaces

Tohl Asoн

(Received September 8, 1975)

§1. Introduction

A (continuous) map $\alpha: M \to M$ of a space M into itself is called an involution if $\alpha^2 = id$. We say that an involution α on M is equivalent to an involution α' on M' if there exists a homeomorphism $h: M \gtrless M'$ such that $\alpha' h = h\alpha$. The purpose of this note is to classify (fixed point) free involutions on compact connected surfaces by this equivalence relation.

For an involution α on M, we obtain its orbit space M/α from M by identifying x with $\alpha(x)$ for $x \in M$. Then, we have the following

THEOREM 1.1. Assume that X is a compact connected surface of genus g and the boundary ∂X consists of l components. Then the number n of equivalence classes of free involutions on connected surfaces, whose orbit spaces are homeomorphic to X, is given by

$$n = \begin{cases} [l/2] + \min\{g, 1\} & \text{if } X \text{ is orientable,} \\ \\ [l/2] + \min\{g, 3\} & \text{if } X \text{ is non-orientable.} \end{cases}$$

Now, we use the following notation:

(1.2) Let $\alpha: M \to M$ be an involution on a surface M of genus g such that the boundary ∂M has l components and the number of α invariant components is l_0 ($\leq l$). Then, the type of such α is $(g, l, l_0, 1)$ if M is orientable and α preserves the orientation, $(g, l, l_0, -1)$ if M is orientable and α reverses the orientation, and $(g, l, l_0, 0)$ if M is non-orientable.

Then we have the following classification theorem of free involutions on compact connected surfaces.

THEOREM 1.3. (i) There exists a free involution of type (g, l, l_0, ε) if and only if we have the following (I), (II) or (III):

(I) $\varepsilon = 1$, $l_0 \ge 0$ is even, $l \ge l_0$ is even and $g + 2\min\{l_0, 1\} - l_0/2 \ge 1$ is odd;

(II) $\varepsilon = -1$, $l_0 = 0$, $l \ge 0$ is even and $g \ge 0$;

(III) $\varepsilon = 0$, $l_0 \ge 0$ is even, $l \ge l_0$ is even and $g + 2\min\{l_0, 1\} - l_0 \ge 2$ is even.

(ii) There exist two free involutions of type (g, l, l_0, ε) up to equivalence if $\varepsilon = l_0 = 0$, $l \ge 0$ is even and $g \ge 4$ is even, and otherwise a free involution of type (g, l, l_0, ε) is unique up to equivalence.