On the Fourier Transform of Rapidly Decreasing Functions of L^p Type on a Symmetric Space

Masaaki EGUCHI* and Atsutaka KOWATA** (Received September 5, 1975)

1. Introduction

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. Let G = KAN be a fixed Iwasawa decomposition and M the centralizer of A in K. In a series of his papers Harish-Chandra introduced the Schwartz space $\mathscr{C}(G)$, in analogy to the space $\mathscr{S}(\mathbb{R}^n)$, of rapidly decreasing functions on the real euclidean space $\mathbb{R}^n([10])$, and also as one of the family of the whole spaces $\mathscr{C}^p(G)$. It is a problem to know whether one can carry out a Fourier analysis of the member of $\mathscr{C}^p(G)$ and know the image of $\mathscr{C}^p(G)$ by the Fourier transform, when possible.

After Harish-Chandra, Eguchi-Okamoto [3] introduced the Schwartz space $\mathscr{C}(G/K)$ on the symmetric space G/K, which is a subspace of the space $\mathscr{C}(G)$, and characterized the image of it by the Fourier transform. In this paper we consider the Fourier transform of the subspaces $\mathscr{C}^p(G/K)$ $(0 consisting of functions in <math>\mathscr{C}^p(G)$ which are invariant under right K action.

Let $0 . Then the space <math>\mathscr{C}^p(G/K)$ is contained in $\mathscr{C}(G/K)$ and so, for any $f \in \mathscr{C}^p(G/K)$ its Fourier transform \tilde{f} is defined. For a general element $f \in \mathscr{C}(G/K), \tilde{f}$ is a C^{∞} function on $\mathfrak{a}^* \times K/M$ with a growth condition and a property of symmetry; but if f is an element of $\mathscr{C}^p(G/K), \tilde{f}$ extends analytically to the interior of a tubular domain with respect to the first component. We denote the tubular domain by F^p . The main theorem of this paper is that the space $\mathscr{Z}(F^p \times K/M)$ consisting of these functions which have holomorphic extension to Int F^p and such symmetry and growth, is the just image of the Fourier transform of $\mathscr{C}^p(G/K)$ in real rank one case.

A brief sketch of the proof of surjectivity is as follows: Let \hat{K}^0 be the set of the equivalence classes of unitary representations of K which are class 1 with respect to M. Let φ be a function in $\mathscr{Z}(F^p \times K/M)$ and f be the Fourier inverse image of φ . Applying the theorem for the Fourier transform of smooth functions on K/M (Sugiura [11]), we obtain a family of functions $\varphi^{\delta}(\delta \in \hat{K}^0)$ with values in endomorphisms of the representation space of δ . Then φ^{δ} has a growth with respect to δ . From this and the fact that f is the sum of trace of inverse image f^{δ} of φ^{δ} , it follows that $f \in \mathscr{C}^p(G/K)$. In order to show that f^{δ} satisfies the