Principal Oriented Bordism Modules of Generalized Quaternion Groups

Yutaka KATSUBE (Received September 5, 1975)

Introduction

The principal oriented bordism module $\Omega_*(G)$ of a group G is defined to be the module of all equivariant bordism classes of closed principal oriented (smooth) G-manifolds. $\Omega_*(G)$ is a module over the oriented bordism ring Ω_* , and this module $\Omega_*(G)$ and the unoriented one $\mathfrak{N}_*(G)$ are studied by several authors.

The purpose of this paper is to determine the Ω_* -module structure of $\Omega_*(H_m)$, $m \ge 2$, where H_m is the generalized quaternion group generated by two elements x and y with two relations

$$x^{2^{m-1}} = y^2$$
 and $xyx = y$,

that is, the subgroup of the unit sphere S^3 in the quaternion field **H** generated by $x = \exp(\pi i/2^{m-1})$ and y = j.

The group H_m acts freely on the unit sphere S^{4n+3} in the quaternion (n+1)-space \mathbf{H}^{n+1} by the diagonal action $\alpha_m(q, (q_0, ..., q_n)) = (qq_0, ..., qq_n) (q, q_i \in \mathbf{H})$, and we obtain the principal oriented H_m -manifold

(0.1)
$$(\alpha_m, S^{4n+3}) \quad (n \ge 0).$$

Also, the element $x = \exp(\pi i/2^{m-1})$ generates the cyclic subgroup Z_{2^m} of order 2^m , and this group acts on the unit sphere S^{2n+1} in the complex (n+1)-space C^{n+1} by the diagonal action $x(z_0,...,z_n) = (xz_0,...,xz_n)$ $(z_i \in C)$. We denote this Z_{2^m} -manifold by (T_m, S^{2n+1}) . Hence we obtain the extension

(0.2)
$$i_m(T_m, S^{4n+1}) \quad (n \ge 0),$$

by the inclusion $i_m: Z_{2m} \subset H_m$, which is the disjoint union $Z_2 \times S^{4n+1}$ with the H_m -action given by

$$x(\varepsilon, z) = (\varepsilon, x^{\varepsilon} z), \quad y(\varepsilon, z) = (-\varepsilon, \varepsilon z) \qquad (\varepsilon = \pm 1, z \in S^{4n+1}).$$

Let π be the set of partitions $\omega = (a_1, ..., a_r)$ with unequal parts a_j , none of which is a power of 2. By the consideration of K. Kawakubo [6], there is a Z_2 -manifold