Generalized Extremal Length of an Infinite Network

Tadashi Nakamura and Maretsugu Yamasaki
(Received September 2, 1975)

Introduction

The extremal length of a network, which is the reciprocal of the value of a quadratic programming problem, was first investigated by R. J. Duffin [4] on a finite graph and next by the second author [7] on an infinite graph. In this paper we shall be concerned with a generalized form of the extremal length as in [5] along the same lines as in [4] and [7]. The generalized extremal length of an infinite network may be regarded as the reciprocal of the value of a convex programming problem. One of our main purposes is to establish a reciprocal relation between the generalized extremal distance and the generalized extremal width of an infinite network which was established by M. Ohtsuka [5] for the continuous case. We shall also study the generalized extremal length of an infinite network relative to a finite set and the ideal boundary of the network. A concept of non-linear flows which was studied in [1] and [3] will appear in § 3 and §4 in connection with the extremal width of a network.

§ 1. Preliminaries

Let X be a set of nodes and let Y be a set of directed arcs. Since we always consider the case where X and Y consist of a countably infinite number of elements, we put

$$
\begin{aligned}
& X=\{0,1,2, \ldots, n, \ldots\}, \\
& Y=\{1,2, \ldots, n, \ldots\} .
\end{aligned}
$$

Let $K=\left(K_{v j}\right)$ be the node-arc incidence matrix. Namely $K_{v j}=1$ if arc j is directed toward node $v, K_{v j}=-1$ if arc j is directed away from node v and $K_{v j}=0$ if arc j and node v do not meet.

We assume that X, Y and K satisfy the following conditions:
(1.1) $\left\{j \in Y ; K_{v j} \neq 0\right\}$ is a nonempty finite set for each $v \in X$.
(1.2) $e(j)=\left\{v \in X ; K_{v j} \neq 0\right\}$ consists of exactly two nodes for each $j \in Y$.
(1.3) For any $\alpha, \beta \in X$, there are $v_{1}, \ldots, v_{n} \in X$ and $j_{1}, \ldots, j_{n+1} \in Y$ such that $e\left(j_{i}\right)=\left\{v_{i-1}, v_{i}\right\}, i=1, \ldots, n+1$ with $v_{0}=\alpha$ and $v_{n+1}=\beta$.

