Remarks on the Multiplicative Products of Distributions

Mitsuyuki ITANO

(Received January 20, 1976)

Many attempts have been made for defining the multiplication between distributions. Y. Hirata and H. Ogata [3] have defined a product of distributions and J. Mikusiński [9] has also defined the same product in a **different** fashion. In [5], we have considered the multiplication invariant under **diffeomorphism** which covers the multiplication in the above sense. If S, $T \in \mathcal{D}'(\mathbb{R}^N)$ arid if $\alpha S * \check{T}$ has the value $(\alpha S * \check{T})(0)$ at 0 in the sense of S. Łojasiewicz [8] for any $\alpha \in \mathcal{D}(\mathbb{R}^N)$, then there exists a unique distribution W such that $\langle W, \alpha \rangle = (\alpha S * \check{T})(0)$. In [10], R. Shiraishi has defined a restricted δ -sequence $\{\rho_n\}$ as a sequence of nonnegative functions $\rho_n \in \mathcal{D}(\mathbb{R}^N)$ such that

- (i) $\operatorname{supp} \rho_n$ converges to $\{0\}$ as $n \to \infty$
- (ii) $\int \rho_n(x) dx$ converges to 1 as $n \to \infty$; (iii) $\int |x|^{|p|} |D^i \rho_n(x)| dx \leq M_p(M_p \text{ being independent of } n)$,

where the integral is extended over the whole *N*-dimensional space, and he has shown that the existence of the product $W = S \circ T$ of *S* and *T* is equivalent to each of the following conditions:

(1) The distributional limit $\lim_{n \to \infty} (S * \rho_n) (T * \tilde{\rho}_n)$ exists for every restricted δ -sequences $\{\rho_n\}$ and $\{\tilde{\rho}_n\}$:

(2) The distributional limit $\lim_{n \to \infty} (S * \rho_n) T$ exists for every restricted δ -sequence $\{\rho_n\}$.

(3) The distributional limit $\lim_{n \to \infty} S(T * \rho_n)$ exists for every restricted δ -sequence $\{\rho_n\}$

And if one of these conditions is satisfied, the limit equals W.

On the other hand, we may define the multiplicative product $S \triangle T$ as the distributional limit $\lim_{n \to \infty} (S * \rho_n)(T * \rho_n)$, if it exists for every restricted δ -sequence $\{\rho_n\}$ ([10, p. 97]). The purpose of this paper is to investigate this multiplication Δ by making a comparison with the multiplication o.

By the definition stated above we see that if $S \circ T$ exists, then $S \wedge T$ exists and is equal to $S \circ T$. However the converse does not hold ([10, p. 97]).