A Note on Coalgebras and Rational Modules

Takefumi SHUDO (Received December 20, 1975)

1. Introduction

Let C be a coalgebra and C* its dual algebra. Every right C-comodule is equipped functorially with a left C*-module structure. A left C*-module thus obtained is called rational. On the other hand every left C*-module M has a unique maximal rational submodule M^{rat} and the correspondence $M \mapsto M^{rat}$ is a functor from the category of left C*-modules to that of rational ones which form a full subcategory of the former. This functor is left exact.

In this note we study the relation between the structure of a coalgebra C and the functor $M \mapsto M^{rat}$.

In Section 3 we consider the exactness of the functor and show the following: When C is irreducible, the functor is exact if and only if C is of finite dimension. When C is cosemisimple, the functor is exact. When C is cocommutative, the functor is exact if and only if C is a direct sum of finite-dimensional subcoalgebras.

In [3] Radford has proved that if every open left ideal in C* is finitely generated, then the class of rational modules is closed under group extensions. And recently Lin [2] investigated as an application of the torsion theories the structure of a coalgebra for which the functor is a left exact radical, i.e., the class of rational modules is closed under group extensions. In Section 4 we study the extension problem and prove the converse of the Radford's result above when the coalgebra has a finite-dimensional coradical or when the coalgebra is cocommutative (Theorem 4.6 and Corollary 4.9). We don't use the torsion theories but some topological concepts in [3].

The author wishes to thank Professor Y. Kurata and Professor S. Togo for their valuable advices.

2. Preliminaries.

Throughout this note, vector spaces, coalgebras and algebras we consider are all over a fixed commutative field k and all linear mappings are k-linear. We follow the terminology in [4] with a few exceptions.

(2.1) Let \pounds be a vector space and E^* its dual space. E^* has the weak-*topology. An open subspace of E^* with this topology is just a closed and