On the Oscillation of Solutions of Nonlinear Functional Differential Equations

Takaŝi Kusano and Hiroshi Onose (Received May 19, 1976)

1. Introduction

This paper is concerned with nonlinear functional differential equations with deviating arguments of the form

(A)
$$x^{(n)}(t) + f(t, x < \mathbf{g}_0(t) >, [x']^2 < \mathbf{g}_1(t) >, ..., [x^{(n-1)}]^2 < \mathbf{g}_{n-1}(t) >) = 0,$$

where $n \ge 2$, $\mathbf{g}_i(t) = (g_{i1}(t), ..., g_{im_i}(t))$, i = 0, 1, ..., n-1,

$$x < \mathbf{g}_0(t) > = (x(g_{01}(t)), ..., x(g_{0m_0}(t))),$$

and

$$[x^{(i)}]^2 < g_i(t) > = ([x^{(i)}(g_{i1}(t))]^2, ..., [x^{(i)}(g_{im}(t))]^2), \qquad i = 1, ..., n-1.$$

The conditions we always assume for f, g_{ij} are as follows:

- (a) $f(t, \mathbf{y}_0, \mathbf{y}_1, ..., \mathbf{y}_{n-1})$ is continuous on the set $[t_0, \infty) \times E$, where $E = R^{m_0} \times R^{m_1} \times \cdots \times R^{m_{n-1}} \quad (R = (-\infty, \infty), R_+ = [0, \infty)),$ $f(t, \mathbf{y}_0, \mathbf{y}_1, ..., \mathbf{y}_{n-1}) > 0$ if $\mathbf{y}_0 > 0$, and $f(t, -\mathbf{y}_0, \mathbf{y}_1, ..., \mathbf{y}_{n-1}) = -f(t, \mathbf{y}_0, \mathbf{y}_1, ..., \mathbf{y}_{n-1}).$
- (b) $g_{ij}(t), j=1,..., m_i, i=0, 1,..., n-1$, are continuous on $[t_0, \infty)$ and $\lim_{t\to\infty} g_{ij}(t) = \infty$.

In what follows we restrict our discussion to those solutions x(t) of equation (A) which exist on some half-line $[T_x, \infty)$ and satisfy

$$\sup\{|x(t)|: t \ge T\} > 0$$

for every $t \ge T_x$. Such a solution is called oscillatory if the set of its zeros is not bounded above. Otherwise the solution is called nonoscillatory. A nonoscillatory solution is said to be strongly nomotone if it tends monotonically to zero as $t \to \infty$ together with its first n-1 derivatives.

The objective of this paper is to study the oscillatory behavior of solutions of equation (A) with specific nonlinearity defined below. We provide conditions