Smooth S^3 -Actions on n Manifolds for $n \le 4$

Tohl Ason (Received May 19, 1976)

§ 1. Introduction

In this note, we say that M is an S^3 (= SU(2))-manifold, if M is a connected compact smooth manifold admitting a non-trivial smooth S^3 -action $S^3 \times M \rightarrow M$. The purpose of this note is to classify such closed manifolds of dimension less than 5 by S^3 -equivariant diffeomorphisms.

We notice the following results (cf. [1, Cor. 3.2] and [6, Th. 2.6.7]).

(1.1) Any closed proper subgroup of

$$S^3 = \{q \in H; |q| = 1\}$$
 (H is the quaternion field)

is conjugate to one of the following subgroups:

 $S^1 = \{z \in C; |z| = 1\}$, the unit circle in the complex field C;

 $NS^1 = \{z, zj; z \in S^1\}$, the normalizer of S^1 in S^3 ;

 $Z_n = \{z \in S^1; z^n = 1\}$, the cyclic group of order $n \ge 1$;

 $D^*(4m) = \{z, zj; z \in \mathbb{Z}_{2m}\} = \eta_2^{-1}(D(2m))$, the binary dihedral group of order $4m \ (\geq 8)$;

 $T^* = \eta_2^{-1}(T)$, $O^* = \eta_2^{-1}(O)$ and $I^* = \eta_2^{-1}(I)$, the binary tetrahedral, octahedral and icosahedral groups of order 24, 48 and 120, respectively.

Here, $\eta_2: S^3 \rightarrow SO(3)$ is the double covering defined by

$$\eta_2(q)p = qpq^{-1}$$
 $(q \in S^3, p \text{ is a pure quaternion}),$

and D(2m) is the dihedral group of order 2m and T, O and I are the tetrahedral, octahedral and icosahedral groups.

For an S^3 -manifold M, we denote by (H) its type of principal isotropy subgroups, and consider the following two cases:

- (a) Every isotropy subgroup is principal.
- (b) There exists a non-principal isotropy subgroup $K \supseteq H$.

Unless otherwise stated, we consider S^3/H as the S^3 -manifold with the action η_1 , $\eta_1(q)[p] = [qp]$. Also, for any S^3 -manifold M_1 and any manifold N, we consider $M_1 \times N$ as the S^3 -manifold acting S^3 trivially on N.

Then, closed S^3 -manifolds are classified up to equivariant diffeomorphisms by the following theorems.