On the Commutativity of Torsion and Injective Hull

Kanroku Aoyama

(Received May 12, 1976)

Introduction

Throughout this note A denotes a commutative ring with a unit and all modules are unitary A-modules. For any module M, if L is a submodule of M and S is a subset of M, then we put ($L: S$) $=\{x \in A ; x S \subseteq L\}$, in particular $O(S)$ $=(0: S)$. For any filter F of ideals of A, we have an operation upon the lattice of submodules of any A-module M, as follows. If L is a submodule of M, we define $C(L, M)=\{x \in M ;(L: x) \in F\}$. Especially we rewrite $C(0, M)=T(M)$; $C(M, E(M))=D(M)$, where $E(M)$ is an injective hull of M. Our main purpose is to answer the question: With the above notations, let F^{\prime} be another filter and T^{\prime}, D^{\prime} be the associated operators relative to F^{\prime}. Can we have the equalities
(1) $D^{\prime}(T(M))=T\left(D^{\prime}(M)\right)$,
(2) $D^{\prime}(M / T(M))=D^{\prime}(M) / D^{\prime}(T(M))$ and
(3) $D(\operatorname{Hom}(N, M))=\operatorname{Hom}(N, D(M))$?

The above equalities have been obtained, in [8], in a special case using the local property.

§ 1. Notation and Preliminaries

Let F be a filter of ideals of A. When L is a submodule of an A-module M, we put $C(L, M)=\{x \in M ;(L: x) \in F\}$. Especially we rewrite $C(0, M)=T(M)$, which is called the F-torsion of $M ; C(M, E(M))=D(M) ; C(\mathfrak{a}, A)=c(\mathfrak{a})$. It is easy to see that, for any submodule N of $M, C(L, M) \cap N=C(L \cap N, N)$ and $C(L, M) / L=T(M / L)$. We denote the class of A-modules M such that $T(M)$ $=M$ by \mathscr{T} and the class of A-modules M such that $T(M)=0$ by \mathscr{F}. The following facts are easy and well-known:
(1) The class \mathscr{T} is closed under submodule, image and direct sum (such class will be called a weak torsion class). Hence a module M belongs to \mathscr{T} if and only if $A x \in \mathscr{T}$ for any element x in M.
(2) T is a left exact subfunctor. Namely, the functor T satisfies the properties: (i) $T(M) \subseteq M$, (ii) if L is a submodule of M, then $T(L)=T(M) \cap L$, and (iii) for any homomorphism $f: M \rightarrow N, f(T(M)) \subset T(N)$ (such functor is called a left exact preradical).
(3) The operator c satisfies the properties: (i) $\mathfrak{a} \subseteq c(\mathfrak{a})$, (ii) $c(\mathfrak{a} \cap \mathfrak{b})=c(\mathfrak{a})$ $\cap c(\mathfrak{b})$ and (iii) $(c(\mathfrak{a}): x)=c(\mathfrak{a}: x)$, for any ideals $\mathfrak{a}, \mathfrak{b}$ and any element x in A

