On the Commutativity of Torsion and Injective Hull

Kanroku Aoyama

(Received May 12, 1976)

Introduction

Throughout this note A denotes a commutative ring with a unit and all modules are unitary A-modules. For any module M, if L is a submodule of M and S is a subset of M, then we put $(L: S) = \{x \in A; xS \subseteq L\}$, in particular O(S) = (0: S). For any filter F of ideals of A, we have an operation upon the lattice of submodules of any A-module M, as follows. If L is a submodule of M, we define $C(L, M) = \{x \in M; (L: x) \in F\}$. Especially we rewrite C(0, M) = T(M);C(M, E(M)) = D(M), where E(M) is an injective hull of M. Our main purpose is to answer the question: With the above notations, let F' be another filter and T', D' be the associated operators relative to F'. Can we have the equalities (1) D'(T(M)) = T(D'(M)), (2) D'(M/T(M)) = D'(M)/D'(T(M)) and

(1) D(Hom(N, M)) = Hom(N, D(M))?

The above equalities have been obtained, in [8], in a special case using the local property.

§1. Notation and Preliminaries

Let F be a filter of ideals of A. When L is a submodule of an A-module M, we put $C(L, M) = \{x \in M; (L: x) \in F\}$. Especially we rewrite C(0, M) = T(M), which is called the F-torsion of M; $C(M, E(M)) = D(M); C(\mathfrak{a}, A) = c(\mathfrak{a})$. It is easy to see that, for any submodule N of M, $C(L, M) \cap N = C(L \cap N, N)$ and C(L, M)/L = T(M/L). We denote the class of A-modules M such that T(M)= M by \mathcal{T} and the class of A-modules M such that T(M) = 0 by \mathcal{F} . The following facts are easy and well-known:

(1) The class \mathcal{T} is closed under submodule, image and direct sum (such class will be called a weak torsion class). Hence a module M belongs to \mathcal{T} if and only if $Ax \in \mathcal{T}$ for any element x in M.

(2) T is a left exact subfunctor. Namely, the functor T satisfies the properties: (i) $T(M) \subseteq M$, (ii) if L is a submodule of M, then $T(L) = T(M) \cap L$, and (iii) for any homomorphism $f: M \to N$, $f(T(M)) \subset T(N)$ (such functor is called a left exact preradical).

(3) The operator c satisfies the properties: (i) $a \subseteq c(a)$, (ii) $c(a \cap b) = c(a) \cap c(b)$ and (iii) (c(a): x) = c(a: x), for any ideals a, b and any element x in A