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1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

(1.1) ^(x,0=Σ3=ι^(

(1.2) iφc, 0) = WoO), w0(*)eL2,

where u(x, 0 and u0(x) are N-vectors and Aj(x) (j = 1, 2,..., n) are NxN matrices,
and assume that this problem is well posed. For the numerical solution of this
problem we consider the difference scheme

(1.3) φc, ί-f k) = Sh(x, h)v(x, 0 (0 g f <Ξ Γ, - oo < Xj < oo),

(1.4) φc, 0) = «o(*)> k = λh,

and study the stability of the scheme in the sense of Lax-Richtmyer, where Sfc(x, /i)
is a difference operator and h is a space mesh width.

The stability of schemes for symmetric hyperbolic systems was studied by
Lax [7], Lax and Wendroff [8, 9], Kreiss [5] and Parlett [12] in the case

(1-5) Sh(x9 h) = ΣΛCΛ(X, h)Tl

where α is a multi-index, CΛ is an N x N matrix and Th is the translation operator.
The stability for nonsymmetric hyperbolic systems was treated first by

Yamaguti and Nogi [20]. They defined a family of bounded linear operators
in L2 associated with an NxN matrix /c(x, ω) which is homogeneous of degree
zero in ω, is independent of x for \x\^R CR>0) and belongs to Cco(R^x(R^
— {0})). They studied the properties of the algebra of such families and applied
the results to the investigation of the stability of Friedrichs' scheme under the
assumption: The system (1.1) is regularly hyperbolic and Aj(x) (j = l, 2,..., n)
are independent of x for |x|^# and belong to C°°. Under the same assump-
tion, Vaillancourt [16, 17] obtained an improved stability condition for Friedrichs'
scheme and a condition for the modified Lax-Wendroff scheme; Kametaka [4]


