Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems with Variable Coefficients

Hisayoshi Shintani and Kenji Tomoeda (Received September 20, 1976)

1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

$$(1.1) \quad \frac{\partial u}{\partial t}(x,t) = \sum_{j=1}^{n} A_j(x) \frac{\partial u}{\partial x_j}(x,t) \qquad (0 \le t \le T, -\infty < x_j < \infty),$$

(1.2)
$$u(x, 0) = u_0(x), \quad u_0(x) \in L_2,$$

where u(x, t) and $u_0(x)$ are N-vectors and $A_j(x)$ (j=1, 2, ..., n) are $N \times N$ matrices, and assume that this problem is well posed. For the numerical solution of this problem we consider the difference scheme

(1.3)
$$v(x, t+k) = S_h(x, h)v(x, t) \qquad (0 \le t \le T, -\infty < x_i < \infty),$$

(1.4)
$$v(x, 0) = u_0(x), \quad k = \lambda h,$$

and study the stability of the scheme in the sense of Lax-Richtmyer, where $S_h(x, h)$ is a difference operator and h is a space mesh width.

The stability of schemes for symmetric hyperbolic systems was studied by Lax [7], Lax and Wendroff [8, 9], Kreiss [5] and Parlett [12] in the case

$$(1.5) S_h(x, h) = \sum_{\alpha} c_{\alpha}(x, h) T_h^{\alpha},$$

where α is a multi-index, c_{α} is an $N \times N$ matrix and T_h is the translation operator.

The stability for nonsymmetric hyperbolic systems was treated first by Yamaguti and Nogi [20]. They defined a family of bounded linear operators in L_2 associated with an $N \times N$ matrix $k(x, \omega)$ which is homogeneous of degree zero in ω , is independent of x for $|x| \ge R$ (R > 0) and belongs to $C^{\infty}(R_x^n \times (R_{\omega}^n - \{0\}))$. They studied the properties of the algebra of such families and applied the results to the investigation of the stability of Friedrichs' scheme under the assumption: The system (1.1) is regularly hyperbolic and $A_j(x)$ (j=1, 2, ..., n) are independent of x for $|x| \ge R$ and belong to C^{∞} . Under the same assumption, Vaillancourt [16, 17] obtained an improved stability condition for Friedrichs' scheme and a condition for the modified Lax-Wendroff scheme; Kametaka [4]