On Infinite-dimensional Algebras Satisfying the Maximal Condition for Subalgebras

Fujio Киво

(Received September 20, 1976)

1.

It has been an open question whether there exists an infinite-dimensional Lie algebra satisfying the maximal condition for subalgebras. Recently in the paper [3], we have given an affirmative answer to this question by showing that the Lie algebra W introduced in [1, p. 177] is such a Lie algebra.

On the other hand, in the paper [2] R. K. Amayo has constructed a countable infinity of pair-wise non-isomorphic Lie algebras satisfying the maximal condition for subalgebras. The reasoning is however much complicated.

Thus in this paper we shall present simple and brief proofs of the results in [2] by reasoning along the same lines as in [3].

The author wishes to express his thanks to Professor S. Tôgô for his suggestion of this problem.

2.

The fundamental tool which we employ is the lemma in [3]. We state it without proof in the following

LEMMA. Let S be a subset of N satisfying the condition: If $s, t \in S$ and $s \neq t, s+t \in S$. Then there exists a finite number of different elements $s_1, s_2,..., s_r$ of S such that

(i) s_1 is the smallest element of S,

(ii) $S = \{s_1\} \cup \{s_2 + ns_1 | n = 0, 1, 2, ...\} \cup \cdots \cup \{s_r + ns_1 | n = 0, 1, 2, ...\}.$

Let f be a field of characteristic 0. We let $\lambda: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{F}$ be a map such that

(*)
$$i \neq j \Rightarrow \lambda(i, j) \neq 0$$

and let $A(\lambda)$ be the infinite-dimensional (not necessarily associative) algebra over \mathfrak{t} with basis $\{w(i)|i \in \mathbb{Z}\}$ and bilinear product defined by

$$w(i) \circ w(j) = \lambda(i, j) w(i+j), \quad i, j \in \mathbb{Z}.$$

For any non-negative integer n, let $A(\lambda, n)$ be a subalgebra of $A(\lambda)$ generated by