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1. Introduction

In this paper, we shall study the limits of potentials on Rn along rays issuing

from the origin. It is known that if U\ is the Newtonian potential of a measure

μ with finite energy, then limr_» ̂  l/5(rξ) = 0 for a. e. ξ with |ξ| = l (seeN. S. Landkof
[2; Theorem 1.21]). We shall deal with the Riesz potential l/JJ of order α, 0<α<
n, of a measure μ whose energy may not be finite, and give an improvement of
the above result (Theorem 1).

We shall then consider the functions of the form

where α>0, β^O, p>l, ap + β<n and/eLp(#n). In special cases, e.g. in the
case where α = l , /? = 0 and l<p<n, 'M. Ohtsuka showed that limr^00F(rξ) = 0
for a.e. ξ with \ξ\ = 1 ([5; Theorems 9.6 and 9. 12, Example 1 given after Theorem
3.21]). This result will be improved in Theorem 2.

Finally we shall be concerned with locally p-precise functions on Rn. We
say that a function u is locally p-precise on Rn if u is p-precise on any bounded

open set in Rn\ for p-precise functions, see [7]. We also refer to [5; Chap.
IV]. Let 1 <p<n and u be a locally p-precise function on R" such that

\|grad u\p\x\~βdx < oo

for some non-negative number β smaller than n — p. Then we shall show in

Theorem 3 that there are a constant c and a set Ec:Γ={ξeRnι \ξ\ = l} such that

) = c if ξeΓ-E
r->oo

and

CP(E) = 0 if. p £ 2,

Cp_ε(£) = 0 for any ε with 0 < ε < p if p > 2 ,

where Cy(E) is the Riesz capacity of E of order y. If, in addition, u is a Riesz

potential of a non-negative measure with finite energy, then c = 0 (cf. [5; Theorem


