On the Radial Limits of Riesz Potentials at Infinity

Yoshihiro MIZUTA

(Received September 6, 1976)

1. Introduction

In this paper, we shall study the limits of potentials on \mathbb{R}^n along rays issuing from the origin. It is known that if U_2^{μ} is the Newtonian potential of a measure μ with finite energy, then $\lim_{r\to\infty} U_2^{\mu}(r\xi) = 0$ for a. e. ξ with $|\xi| = 1$ (see N. S. Landkof [2; Theorem 1.21]). We shall deal with the Riesz potential U_{α}^{μ} of order α , $0 < \alpha < n$, of a measure μ whose energy may not be finite, and give an improvement of the above result (Theorem 1).

We shall then consider the functions of the form

$$F(x) = \int |x-y|^{\alpha-n} |y|^{\beta/p} f(y) dy,$$

where $\alpha > 0$, $\beta \ge 0$, p > 1, $\alpha p + \beta < n$ and $f \in L^p(\mathbb{R}^n)$. In special cases, e.g. in the case where $\alpha = 1$, $\beta = 0$ and 1 , <math>M. Ohtsuka showed that $\lim_{r \to \infty} F(r\xi) = 0$ for a.e. ξ with $|\xi| = 1$ ([5; Theorems 9.6 and 9.12, Example 1 given after Theorem 3.21]). This result will be improved in Theorem 2.

Finally we shall be concerned with locally *p*-precise functions on \mathbb{R}^n . We say that a function *u* is locally *p*-precise on \mathbb{R}^n if *u* is *p*-precise on any bounded open set in \mathbb{R}^n ; for *p*-precise functions, see [7]. We also refer to [5; Chap. IV]. Let 1 and*u*be a locally*p* $-precise function on <math>\mathbb{R}^n$ such that

$$\int |\operatorname{grad} u|^p |x|^{-\beta} dx < \infty$$

for some non-negative number β smaller than n-p. Then we shall show in Theorem 3 that there are a constant c and a set $E \subset \Gamma = \{\xi \in \mathbb{R}^n; |\xi| = 1\}$ such that

$$\lim_{r \to \infty} u(r\xi) = c \quad \text{if} \quad \xi \in \Gamma - E$$

and

$$C_p(E) = 0$$
 if $p \le 2$,
 $C_{p-\varepsilon}(E) = 0$ for any ε with $0 < \varepsilon < p$ if $p > 2$,

where $C_{\gamma}(E)$ is the Riesz capacity of E of order γ . If, in addition, u is a Riesz potential of a non-negative measure with finite energy, then c=0 (cf. [5; Theorem