Module Spectra over the Moore Spectrum

Shichirô OKA

(Received August 24, 1976)

Introduction

Let q be an odd integer and $M_q(=M)$ be the Moore spectrum of type Z_q . It is a ring spectrum with multiplication $m_M: M_q \wedge M_q \rightarrow M_q$ and unit $i: S \rightarrow M_q$ [1], where S is the sphere spectrum. A finite CW-spectrum X is called an M_q module spectrum if X is equipped with a left inverse $m_X: M_q \wedge X \rightarrow X$, which we call an M_q -action on X, of $i \wedge 1_X$. It is clear that X is an M_q -module spectrum if and only if $q1_X=0$ in [X, X]. When q is a prime, our M_q -module spectrum is just the Z_q -spectrum introduced by H. Toda [10].

The main purpose of this note is to investigate conditions under which an M_q -module spectrum is (non-)associative. Here an M_q -module spectrum (X, m_X) is called *associative* if $m_X(1_M \wedge m_X) = m_X(m_M \wedge 1_X)$. For an M_q -module spectrum X, the order r of 1_X is a divisor of q and the homology group $H_i(X)$ is a finite Z_r -module, and we shall obtain in §6 the following theorems on the associativity and on the non-associativity according as the case $q \neq \pm 3 \mod 9$ or (r, 3) = 1 and the case $q \equiv \pm 3 \mod 9$ and 3|r.

THEOREM 6.6. Let X be an M_q -module spectrum and in the case of $q \equiv \pm 3 \mod 9$ assume that the order of 1_X is relatively prime to 3. If X satisfies the following two conditions, then X admits an associative M_q -action.

(i) $#H_i(X)$ is relatively prime to $#H_{i-1}(X)$ and to $#H_{i-2}(X)$.

(ii) For any prime p, the p-component of $H_i(X)$ is free over the p-component of Z_q .

Here #G denotes the order of a finite group G. Furthermore we shall see that in the dual Postnikov system $\{X_i\}$ of $X(X_i$ is a subspectrum of X realizing $\sum_{j \le i} H_j(X)$ as its homology group) each X_i is also an associative M_q -module spectrum, (cf. Remark 6.7). We shall also construct, for every prime q > 3, an example which does not satisfy the condition (i) and has a unique M_q -action, which is not associative (Example 6.8).

THEOREM 6.3. Assume that $q \equiv \pm 3 \mod 9$. Let X be an M_q -module spectrum such that the order of 1_X is a multiple of 3. Then every M_q -action on X is not associative.

In §1, we shall study elementary properties of M_a -module spectra. In §2,