Realizing Some Cyclic BP_{*}-modules and Applications to Stable Homotopy of Spheres

Shichirô OKA (Received January 10, 1977)

Introduction

Let $BP_*()$ be the Brown-Peterson homology theory localized at a prime $p \ge 5$. Its coefficient ring BP_* is the polynomial ring $Z_{(p)}[v_1, v_2, ...]$ over the integers localized at p on Hazewinkel's generators v_i of degree $2(p^i-1)$ ([2], [3], [4], [6]).

In the previous paper [14; Th. D, DII, D', D'II], we constructed the spectra realizing cyclic BP_* -modules $BP_*/(p, v_1^j, v_2^{sp})$ at $p \ge 5$ in the following three cases: $1 \le j \le p, s \ge 1, (j, s) \ne (p, 1); p+1 \le j \le 2p-2, p|s; p+1 \le j \le 2p, 2p|s$. In this paper, we shall prove the following realizability theorems.

THEOREM 4.3. For $p \ge 5$ and $s \ge 2$, there exist spectra L_s such that $BP_*(L_s) = BP_*/(p^2, v_1^p, v_2^{sp^2})$.

THEOREM 4.4. For $p \ge 5$, $s \ge 2$ and j with $p+1 \le j \le 2p$, there exist spectra $Y_{s,j}$ such that $BP_*(Y_{s,j}) = BP_*/(p, v_1^j, v_2^{sp^2})$.

Each L_s is an 8-cell complex and we define the element $\beta_{sp^2/(p,2)}$ in $\pi_*(S)$, the stable homotopy group of spheres, by the attaching map of the 5th cell at the 4th cell in L_s , and similarly we define $\beta_{sp^2/(j)} \in \pi_*(S)$ from $Y_{s,j}$ (for the details, see Definitions 5.1–5.2). Then using methods developed by H. R. Miller, D. C. Ravenel, W. S. Wilson and others ([7], [8], [9]), we see that the elements $\beta_{sp^2/(p,2)}$ and $\beta_{sp^2/(j)}$ of the same name in $H^2BP_* = \operatorname{Ext} \frac{2}{BP_*BP}(BP_*, BP_*)$ [8] survive non-trivially to E_{∞} term in the Adams-Novikov spectral sequence and support the homotopy elements of the above.

THEOREM 5.3. For $p \ge 5$, $s \ge 2$, the elements $\beta_{sp^2/(p,2)}$ in $\pi_{(sp^3+sp^2-p)q-2}(S)$ (q=2(p-1)) are nontrivial of order p^2 and indecomposable. Hence the group $\pi_{(sp^3+sp^2-p)q-2}(S)$ contains a summand isomorphic to Z/p^2Z .

THEOREM 5.4. For $p \ge 5$, $s \ge 2$, $p+1 \le j \le 2p$, the elements $\beta_{sp^2/(j)}$ in $\pi_{(sp^3+sp^2-j)q-2}(S)$ (q=2(p-1)) are indecomposable and generate cyclic summands of order p.

The known elements in $\pi_*(S)$ of order p^2 are the elements in Im J [1] and the