On Removable Singularities for Polyharmonic Distributions

Yoshihiro MIZUTA (Received May 19, 1977)

1. Introduction

Throughout this paper let 1 , <math>1/p + 1/q = 1 and m be a positive integer. For an open set G in the n-dimensional Euclidean space \mathbb{R}^n , we denote by $BL_m(L^q(G))$ the space of all distributions on G whose distributional derivatives of order m are all in $L^q(G)$, that is, a distribution T on G belongs to $BL_m(L^q(G))$ if and only if

$$|T|_{m,q} = |T|_{m,q,G} = (\sum_{|\alpha|=m} \|D^{\alpha}T\|_{L^{q}(G)}^{q})^{1/q} < \infty,$$

where α is an *n*-tuple $(\alpha_1, \alpha_2, ..., \alpha_n)$ of non-negative integers with length $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, $D^{\alpha} = \partial^{|\alpha|} / \partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}$ and $\|\cdot\|_{L_q(G)}$ denotes the L^q -norm on G. We write simply $\|\cdot\|_q$ for $\|\cdot\|_{L^q(\mathbb{R}^n)}$. We denote by Δ^m the Laplace operator iterated *m* times and write simply Δ for Δ^1 . The value of a distribution *T* on *G* at $\varphi \in C_0^{\infty}(G)$ is denoted by < T, $\varphi >$.

Let *E* be a compact set in \mathbb{R}^n . L. I. Hedberg proved the following result ([5; Theorem 1]): Let \mathscr{C} be the space $C_0^{\infty}(\mathbb{R}^n \setminus E)$ or the space of all functions $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that $|\operatorname{grad} \varphi| = 0$ on a neighborhood of *E*. Then \mathscr{C} is dense in $C_0^{\infty}(\mathbb{R}^n)$ with respect to the norm $|\cdot|_{1,p}$ if and only if any $T \in BL_1(L^q(\mathbb{R}^n))$ such that $\langle T, \Delta \varphi \rangle = 0$ for any $\varphi \in \mathscr{C}$ is harmonic on \mathbb{R}^n . We generalize this result as follows:

THEOREM 1. Let \mathscr{C} and \mathscr{C}' be subspaces of $C_0^{\infty}(\mathbb{R}^n)$ such that $\mathscr{C} \subset \mathscr{C}'$. Then \mathscr{C} is dense in \mathscr{C}' with respect to the norm $|\cdot|_{m,p}$ if and only if any $T \in BL_m(L^q(\mathbb{R}^n))$ such that $\langle T, \Delta^m \varphi \rangle = 0$ for any $\varphi \in \mathscr{C}$ satisfies $\langle T, \Delta^m \psi \rangle = 0$ for any $\psi \in \mathscr{C}'$.

As an application of this theorem, we shall give a condition, in terms of capacity, for a compact set in \mathbb{R}^n to be removable for a class of polyharmonic distributions.

2. Proof of Theorem 1

We first suppose that \mathscr{C} is dense in \mathscr{C}' with respect to $|\cdot|_{m,p}$. We write