Extremal Length of an Infinite Network Which is not Necessarily Locally Finite

Tadashi Nakamura and Maretsugu Yamasaki
(Received May 18, 1977)

Introduction

In the preceding paper [2], we introduced a generalized extremal length of an infinite network N which is locally finite, i.e., each node has only a finite number of incident arcs, and investigated the generalized reciprocal relation between the extremal distance $E L_{p}(A, B)$ (resp. $E L_{p}(A, \infty)$) and the extremal width $E W_{q}(A, B)$ (resp. $E W_{q}(A, \infty)$) relative to mutually disjoint nonempty finite subsets A and B of nodes (resp. a finite subset A of nodes and the ideal boundary ∞ of the network N). In this paper we shall be concerned with the same problem on an infinite network which is not necessarily locally finite. It will be shown in $\S 2$ that the generalized reciprocal relation between $E L_{p}(A, B)$ and $E W_{q}(A, B)$ still holds in the case where N is not necessarily locally finite. However, the generalized reciprocal relation between $E L_{p}(A, \infty)$ and $E W_{q}(A, \infty)$ does not hold, in general, in the present case. In $\S 3$ we shall introduce a p-almost locally finite network, for which the generalized reciprocal relation holds. We shall also study the stability of $\left\{E L_{p}\left(A, X-X_{n}\right)\right\}$ and $\left\{E W_{q}\left(A, X-X_{n}\right)\right\}$ with respect to an exhaustion $\left\{\left\langle X_{n}, Y_{n}\right\rangle\right\}$ of N in the case where N is a p-almost locally finite network.

§1. Preliminaries

Let X be a finite or countably infinite set of nodes, let Y be a finite or countably infinite set of arcs and let K be a function on $X \times Y$ satisfying the following conditions:
(1.1) The range of K is $\{-1,0,1\}$.
(1.2) For each $y \in Y, e(y) \equiv\{x \in X ; K(x, y) \neq 0\}$ consists of exactly two nodes x_{1}, x_{2} and $K\left(x_{1}, y\right) K\left(x_{2}, y\right)=-1$.
(1.3) For any $x, x^{\prime} \in X$, there are $x_{1}, \ldots, x_{n} \in X$ and $y_{1}, \ldots, y_{n+1} \in Y$ such that $e\left(y_{j}\right)=\left\{x_{j-1}, x_{j}\right\}, j=1, \ldots, n+1$ with $x_{0}=x$ and $x_{n+1}=x^{\prime}$.

For each $x \in X$, the set

$$
Y(x)=\{y \in Y ; K(x, y) \neq 0\}
$$

