Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems

Kenji Томоеда (Received May 18, 1977)

1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

(1.1)
$$\frac{\partial u}{\partial t}(x,t) = \sum_{j=1}^{n} A_j(x,t) \frac{\partial u}{\partial x_j}(x,t) \qquad (0 \le t \le T, -\infty < x_j < \infty),$$

(1.2)
$$u(x, 0) = u_0(x), \quad u_0(x) \in L_2,$$

where u(x, t) and $u_0(x)$ are N-vectors and $A_j(x, t)$ (j=1, 2, ..., n) are $N \times N$ matrices, and assume that this problem is well posed. For the numerical solution of this problem we consider the following difference scheme:

(1.3)
$$v(x, t+k) = S_h(t, h)v(x, t) \quad (0 \le t \le T, -\infty < x_j < \infty),$$

(1.4)
$$v(x, 0) = u_0(x), \quad k = \lambda h \quad (\lambda > 0),$$

where $S_h(t, \mu)$ is a sum of products of operators of the form $\sum_{\alpha} c_{\alpha}(x, t, \mu) T_h^{\alpha}(\mu \ge 0)$, α is a multi-index, $c_{\alpha}(x, t, \mu)$ is an $N \times N$ matrix, T_h is the translation operator and h is a space mesh width.

In our previous paper [5] we treated the case where $A_j(x, t)$ (j=1, 2, ..., n) are independent of t, and obtained sufficient conditions for L_2 -stability of the scheme (1.3). In this paper we extend the results to the system (1.1) that satisfies the following conditions: Eigenvalues of $A(x, t, \xi) = \sum_{j=1}^{n} A_j(x, t)\xi_j/|\xi|$ $(\xi \neq 0)$ are all real and their multiplicities are independent of x, t and ξ ; elementary divisors of $A(x, t, \xi)$ are all linear; there exists a positive constant δ such that

$$|\lambda_i(x, t, \xi) - \lambda_j(x, t, \xi)| \ge \delta \qquad (i \neq j; i, j = 1, 2, \dots, s),$$

where $\lambda_i(x, t, \xi)$ (i=1, 2, ..., s) are all the distinct eigenvalues of $A(x, t, \xi)$.

Our proof of stability is based on the following result: The scheme (1.3) is stable if $S_h(t, h)$ and $S_h(t, 0)$ are the families of bounded linear operators in L_2 and if there exist positive constants c_j (j=0, 1, 2) and a norm $||| \cdot |||_t$ which depends on t and is equivalent to the L_2 -norm such that

(1.5)
$$|||u|||_{t+k} \leq (1+c_0k) |||u|||_t \quad (t+k \leq T),$$