Some Remarks on Representations of p-adic Chevalley Groups

Kazutoshi KARIYAMA (Received May 16, 1977)

Introduction

Let F be a p-adic field, and let \mathfrak{D} and \mathfrak{P} be the ring of integers and the maximal ideal of \mathfrak{D} respectively. F. I. Mautner [4] first constructed square-integrable irreducible unitary representations of $PGL_2(F)$ which are induced by irreducible representations of a certain maximal compact subgroup. In [5], J. A. Shalika carried it out for $SL_2(F)$ by a different method. Independently, in [6] and [7], T. Shintani extended Mautner's results to a sort of special linear group of rank *n*. Recently, in [2] and [3], P. Gérardin extended their results to reductive)*p*-adic groups whose semi-simple parts are simply connected.

In this paper, we extend the former results of [7], which are not covered by Gérardin's results, to general *p*-adic Chevalley groups. The contents of this paper are as follows. Let G(z) be a Chevalley group over the ring of all rational integers z. Then we have a *p*-adic Chevalley group G(F) and its maximal compact subgroup $G(\mathfrak{O})$ by base changes. In §1, we give preliminaries on the structures of *p*-adic Chevalley groups after [3]. In §2, we prepare certain lemma about induced representations of finite groups. In §3, we show that continuous irreducible unitary representations of $G(\mathfrak{O})$, which do not come from representations of $G(\mathfrak{O}/\mathfrak{P})$, are induced by certain irreducible representations of certain subgroups of $G(\mathfrak{O})$ (Theorem 1). In §4, when we let v be a continuous irreducible unitary representation of $G(\mathfrak{O})$ which does not come from a representation of $G(\mathfrak{O}/\mathfrak{P})$, we obtain a sufficient condition for $Ind_{G(F)}^{G(F)}v$ to be square-integrable.

In concluding the introduction, the author wishes to express his sincere gratitude to R. Hotta who read this paper and gave him many advices.

NOTATIONS: (i) Let F be a non-archimedean local field, and let $\mathfrak{D}, \mathfrak{P}$ and π be the ring of integers of F, the maximal ideal of \mathfrak{D} , and a prime element of F, respectively. Let p be the characteristic of the finite field $\mathfrak{D}/\mathfrak{P}$.

(ii) For a ring R, we denote by $M(n_1, n_2, R)$ the set of n_1 by n_2 matrices with coefficients in R. We put M(n, R) = M(n, n, R).

(iii) For each positive integer m, we denote by ψ_m the reduction modulo $\mathfrak{P}^m: \mathfrak{O} \to \mathfrak{O}/\mathfrak{P}^m$. For integers $n \ge m \ge 1$, we denote by the same symbol ψ_m the reduction modulo $\mathfrak{P}^m: \mathfrak{O}/\mathfrak{P}^n \to \mathfrak{O}/\mathfrak{P}^m$.