On p-Indicators in Ext(Q/Z, T)

Toshiko KOYAMA (Received September 20, 1977)

§1. Introduction

All groups considered in this paper are abelian groups and written additively. We mention basic notations and terminology here. Further details may be found in [1] and [2].

A group A is divisible if nA = A for every integer $n (\neq 0)$. A is reduced if A contains no divisible subgroups $(\neq \{0\})$. A is said to be p-divisible if pA = A for some prime p. Let p be a prime and σ be an ordinal. If $\sigma - 1$ exists, $p^{\sigma}A = p(p^{\sigma-1}A)$; if σ is a limit ordinal, $p^{\sigma}A = \cap p^{\rho}A (\rho < \sigma)$. The σ -th Ulm subgroup, denoted by A^{σ} , is $\cap_p p^{\omega\sigma}A$, where p runs over all primes.

There is a least ordinal λ such that $p^{\lambda}A$ is *p*-divisible. λ is called the *p*length of A. If x is an element of A, $h_p(x)$ shall denote the *p*-height of x in A as follows: if $x \in p^{\sigma}A \setminus p^{\sigma+1}A$, $h_p(x) = \sigma$; if $x \in p^{\sigma}A = p^{\sigma+1}A$ for some σ , $h_p(x)$ $= \infty$ where ∞ is considered to be larger than every occurring ordinal. Set $h_p(p^n x) = \sigma_n$ for $n = 0, 1, 2, \cdots$. We call the sequence of ordinals and ∞ 's (σ_0 , $\sigma_1, \sigma_2, \cdots$) the *p*-indicator of x. If $\sigma_n + 1 < \sigma_{n+1}$, then the *p*-indicator of x is said to have a gap between σ_n and σ_{n+1} . Let p_1, \cdots, p_n, \cdots be the sequence of all primes. With a given element x, we associate the height matrix

$$\left(\begin{array}{c}\sigma_{10}\sigma_{11}\cdots\\ \cdots\\ \sigma_{n0}\sigma_{n1}\cdots\\ \cdots\end{array}\right)$$

whose *n*-th row is the p_n -indicator of x.

A subgroup G of A is called *pure*, if $nG = G \cap nA$ holds for every integer n. G is called *isotype*, if $p^{\sigma}G = G \cap p^{\sigma}A$ for all ordinals σ and primes p. If this relation holds for some prime p, G is said to be p-isotype in A.

If a group A contains both nonzero elements of finite order and elements of infinite order, A is called *mixed*. The *torsion-free rank* of a group A is the cardinality of an independent subset of A which contains only elements of infinite order and which is maximal with respect to this property.

A group A is called *cotorsion* if every extension of A by a torsion-free group splits. A cotorsion group that is reduced and has no nonzero torsion-free direct summands is called *adjusted*. A group A is called *algebraically compact* if A is a direct summand in every group G that contains A as a pure subgroup.