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§1. Introduction

All groups considered in this paper are abelian groups and written additively.

We mention basic notations and terminology here. Further details may be found

in [1] and [2].

A group A is divisible if nA = Λ for every integer n (τ^0). A is reduced if

A contains no divisible subgroups (^{0}). A is said to be p-divisible if pA = A

for some prime p. Let p be a prime and σ be an ordinal. If σ— 1 exists, pσA

= p(pσ~ίA)'9 if σ is a limit ordinal, pσA= f] ppA (ρ<σ). The σ-th Ulm sub-

group, denoted by Aσ, is n pp
ωσA, where p runs over all primes.

There is a least ordinal λ such that pλA is p-divisible. λ is called the p-

length of A. If x is an element of A, hp{x) shall denote the p-height of x in A

as follows: if xepσA\pσ+ίA, hp{x) — σ\ if xepσA = pσ+1A for some σ, hp(x)

= oo where oo is considered to be larger than every occurring ordinal. Set

hp(pnx) = σn for n = 0, 1, 2, . We call the sequence of ordinals and oo's (σ0,

0"i> σ2>*") ^ e p-indicator of x. If σπ + 1 < σ Λ + 1 , then the p-indicator of x is said

to have a gap between σn and σn+i. Let pu , /?„,-•• be the sequence of all primes.

With a given element x, we associate the height matrix

σn0σn

whose n-th row is the pπ-indicator of x.

A subgroup G of A is called pure, if nG — G Π nA holds for every integer n.

G is called isotype, if pσG = G n pM for all ordinals σ and primes p. If this rela-

tion holds for some prime p, G is said to be p-isotype in A.

If a group ,4 contains both nonzero elements of finite order and elements of

infinite order, A is called mixed. The torsion-free rank of a group A is the

cardinality of an independent subset of A which contains only elements of infinite

order and which is maximal with respect to this property.

A group A is called cotorsion if every extension of A by a torsion-free group

splits. A cotorsion group that is reduced and has no nonzero torsion-free direct

summands is called adjusted. A group A is called algebraically compact if

A is a direct summand in every group G that contains A as a pure subgroup.


