On the Trace Mappings for the Space $B_{p,\mu}(\mathbb{R}^N)$

Mitsuyuki ITANO (Received September 20, 1977)

1. Introduction

By $H^{\mu}(\mathbb{R}^N)$ we shall understand the space of $u \in \mathcal{S}'(\mathbb{R}^N)$ such that its Fourier transform \hat{u} is a locally summable function satisfying

$$||u||_{\mu}^{2} = \left(\frac{1}{2\pi}\right)^{N} \int_{\Xi^{N}} |\hat{u}(\xi)|^{2} \mu^{2}(\xi) d\xi < \infty,$$

where R^N is an N-dimensional Euclidean space, Ξ^N its dual Euclidean space and μ is a temperate weight function in Ξ^N . In our previous paper [2] we have given a trace theorem for the space $H^{\mu}(R^N)$. Let $\mu = \mu(\xi', \tau), \ \xi' = (\xi_1, ..., \xi_n), \ \tau = (\tau_1, ..., \tau_m), \ N = n + m$ and assume $\int_{\Xi^m} \frac{|\tau|^{2M}}{\mu^2(\xi', \tau)} d\tau < \infty$ for a non-negative integer M.

Put $v_k(\xi') = \left\{ \int_{\Xi^m} \frac{\tau^{2k}}{\mu^2(\xi', \tau)} d\tau \right\}^{-1/2}$ for $k = (k_1, ..., k_m), k_j$ being a non-negative integer, such that $|k| \le M$. Then the mapping

$$H^{\mu}(\mathbb{R}^N) \ni u \longrightarrow \{D_t^k u(x', 0)\} \in \prod_{|k| \le M} H^{\nu_k}(\mathbb{R}^n)$$

is an epimorphism if and only if there exists a positive constant C such that $\det |\kappa_{k+l}| \ge C \prod_{|k| \le M} \kappa_{2k}$ with $\kappa_k(\xi') = \int_{\Xi^m} \frac{\tau^k}{\mu^2(\xi', \tau)} d\tau$.

The purpose of this paper is to investigate the trace mappings for the space $B_{p,\mu}(R^N)$, $1 , which consists of all distributions <math>u \in \mathcal{S}'(R^N)$ such that \hat{u} is a function and

$$||u||_{p,\mu}^p = \left(\frac{1}{2\pi}\right)^N \int_{\pi^N} |\hat{u}(\xi)|^p \mu^p(\xi) d\xi < \infty.$$

Here $B_{2,\mu}(R^N) = H^{\mu}(R^N)$. We shall give some sufficient conditions for the trace mapping of above type for $B_{p,\mu}(R^N)$ to be an epimorphism. We shall also investigate the trace mappings by making a comparison with the notions of multiplication of distributions and section of distributions.

2. Preliminaries

We shall use the same notations and terminologies as in our previous paper