On a p-Capacity of a Condenser and KD^{p} -Null Sets

Hiromichi Үамамото

(Received September 19, 1977)

Introduction

Ahlfors and Beurling [1] introduced the notion of null sets of class N_D in the complex plane and characterized such null sets by means of the extremal length. Hedberg [6] considered a generalization of this notion, namely, removable sets for the class FD^p (1 in an N-dimensional euclidean space $<math>R^N$, and characterized such removable sets by means of condenser capacities. We can consider a class KD^p of p-precise functions on R^N $(N \ge 3)$ and define KD^{p} null sets. In the present paper, we shall show several relations between KD^{p} null sets and p-capacities of a condenser.

A real valued function u defined in a domain D of \mathbb{R}^N is called a p-precise function, if it is absolutely continuous along p-a.e. curve in D and |grad u| belongs to $L^p(D)$. A p-precise function u in D has a finite curvilinear limit $u(\gamma)$ along p-a.e. curve γ in D (see [9, Theorem 5.4]). Let α be a compact subset of ∂D and $\Gamma_D(\alpha)$ be the family of all locally rectifiable curves in D each of which starts from some point of D and tends to α . Let α_0 , α_1 be non-empty compact subsets of ∂D such that $\alpha_0 \cap \alpha_1 = \emptyset$. We follow [9] in defining the p-capacity of condenser ($\alpha_0, \alpha_1; D$):

$$C_p(\alpha_0, \alpha_1; D) = \inf_u \int_D |\operatorname{grad} u|^p dx,$$

where the infimum is taken over all *p*-precise functions *u* in *D* such that $u(\gamma)=0$ (resp. 1) for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$). Denote by \hat{D} the Kerékjártó-Stoïlow compactification of *D*. For a condenser $(\alpha_0, \alpha_1; D)$ such that α_0 and α_1 are two mutually disjoint closed subsets of $\hat{D}-D$ and a partition $\{\beta_i\}$ of $\hat{D}-D$ $-\alpha_0-\alpha_1$, we shall consider a new kind of *p*-capacity $C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\})$ as follows. Let the boundary components of *D* be divided into α_0, α_1 and $\{\beta_i\}$. We set

$$C_p^*(\alpha_0, \alpha_1; D, \{\beta_i\}) = \inf_u \int_D |\operatorname{grad} u|^p dx,$$

where the infimum is taken over all *p*-precise functions u in D such that $u(\gamma)=0$ (resp. 1) for *p*-a.e. $\gamma \in \Gamma_D(\alpha_0)$ (resp. $\Gamma_D(\alpha_1)$) and $u(\gamma)=a_i$ for *p*-a.e. $\gamma \in \Gamma_D(\beta_i)$, where each a_i is a constant depending on u. On the other hand, we take an