Hiroshima Math. J. 8 (1978), 71–83

Extensions of Group Actions

Kensô Fujii

(Received August 26, 1977)

§1. Introduction

Let G be a finite group, A be a discrete abelian group, and

$$0 \longrightarrow A \xrightarrow{j} K \xrightarrow{j} G \longrightarrow 1$$

be an extension with the associated operator $\phi: G \to \operatorname{Aut}(A)$, $\phi(j(k))(a) = kak^{-1}$. Also let X be a connected CW-complex with a G-action $\beta: G \times X \to X$ or $\beta: G \to$ Homeo(X) satisfying $\phi(\operatorname{Ker} \beta) = 1_A$ and $\pi: P \to X$ be a principal A-bundle with an A-action $\alpha: A \times P \to P$.

In this paper, we study the existence and the enumeration of K-actions γ on P such that the following diagram is commutative:

$$A \times P \xrightarrow{c} K \times P \xrightarrow{j \times \pi} G \times X$$
$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\gamma} \qquad \qquad \downarrow^{\beta}$$
$$P = P \xrightarrow{\pi} X.$$

We call such a K-action γ on P an extended K-action on P of α over β . In [3], A. Hattori and T. Yoshida have studied this problem for $K = A \times G$, where A is a product of a torus group and a discrete abelian group, (cf. also [2, p. 23, Remark]).

By considering the G-action (2.8) on [X, BA] of all equivalence classes of principal A-bundles over X, we define the map

(2.17)
$$\Theta: [X, BA]^G \longrightarrow H^2_{\phi}(G, A)$$

from the set $[X, BA]^G$ of all G-invariant classes to the cohomology $H^2_{\phi}(G, A)$ of the group G with coefficients in the G-module A by ϕ . Then we have the following existence theorem:

THEOREM 3.3. A principal A-bundle P admits an extended K-action of α over β if and only if

$$[P] \in [X, BA]^G$$
 and $\Theta([P]) = \omega([K]),$

where ω : Opext(G, A, ϕ) \rightarrow $H^2_{\phi}(G, A)$ is the bijection given in [4, Ch. IV, Th. 4.1].

As an application, we obtain