On the Existence of Non-tangential Limits of Polyharmonic Functions

Yoshihiro MIZUTA and Bui Huy QUI (Received January 20, 1978)

1. Introduction and statement of results

Let \mathbb{R}^n $(n \ge 2)$ be the *n*-dimensional Euclidean space. A point x of \mathbb{R}^n will be written also as $(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1$. We denote by \mathbb{R}^n_+ the set of all points $x = (x', x_n) \in \mathbb{R}^n$ such that $x_n > 0$, and by \mathbb{R}^n_0 its boundary $\partial \mathbb{R}^n_+$. For a function $u \in \mathbb{C}^{\infty}(\mathbb{R}^n_+)$, we define the gradient of order k by

$$\nabla^k u(x) = (D^{\gamma} u(x))_{|\gamma|=k}, \qquad x \in \mathbb{R}^n_+,$$

where $\gamma = (\gamma_1, ..., \gamma_n)$ is a multi-index with length $|\gamma| = \sum_{i=1}^n \gamma_i$ and $D^{\gamma} = (\partial/\partial x_1)^{\gamma_1} \cdots (\partial/\partial x_n)^{\gamma_n}$. A function $u \in C^{\infty}(\mathbb{R}^n_+)$ is said to be polyharmonic of order *m* in \mathbb{R}^n_+ if $\Delta^m u = 0$ on \mathbb{R}^n_+ , and to have a non-tangential limit at $\xi \in \mathbb{R}^n_0$ if

$$\lim_{\substack{x\to\xi\\x\in\Gamma(\xi;a)}}u(x)$$

exists and is finite for all a > 0, where Δ^m is the Laplace operator iterated m times and

$$\Gamma(\xi; a) = \{x = (x', x_n) \in \mathbb{R}^n; |(x', 0) - \xi| < ax_n, |x - \xi| \leq 1\}.$$

Our first aim is to show the following theorem:

THEOREM 1. Let k and m be positive integers such that $k \ge m$, 1 $and <math>-\infty < \alpha < kp$. If u is a function polyharmonic of order m in \mathbb{R}^n_+ which satisfies

$$\iint_{G} |\mathcal{F}^{k}u(x', x_{n})|^{p} x_{n}^{\alpha} dx' dx_{n} < \infty \quad \text{for any bounded open set } G \subset \mathbb{R}^{n}_{+},$$

then there exists a Borel set $E \subset \mathbb{R}_0^n$ such that $B_{k-\alpha/p,p}(E) = 0$ and u has a nontangential limit at each point of $\mathbb{R}_0^n - E$.

Here $B_{\beta,p}(\beta > 0)$ is the Bessel capacity of index (β, p) (cf. [2]). Theorem 1 is a generalization of a result of the first author [3; Theorem 1] (k=m=1). In case $-1 < \alpha < kp-1$, Theorem 1 is the best possible as to the size of the exceptional set in the following sense: