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1. Introduction

In the n-dimensional Euclidean space R”, we are concerned with the
differentiability properties of Riesz potential U% of order o, 0<a<n, of a non-
negative measure u. The potential U4 may fail to be differentiable at any point
of R", since U% may take the value co on a countable dense subset of R*. We
are therefore motivated to relax the requirement in the definition of differen-
tiability; in fact, if we restrict the set of approach to x°, then we may be able to
conclude
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where L=L,, is a linear function. The following problems are proposed here:

(i) Characterize the excluded set E in an appropriate manner.

(ii) Evaluate the size of the set of all x° at which U¥ is not differentiable
in such a sense.

Before finding answers to these problems, we fix some notation which will
be used in this note. For a point x=(x,,..., x,) € R* and a multi-index y=(y,,...,
Ya), We define
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We denote by R, the Riesz kernel of order a. Fix a point x° e R" and set
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for a positive integer m.
A set E is said to be a-thin at x© either if x°¢ E\{x°} (the closure of E\{x°})
or if x° € E\{x%} and there is a non-negative measure u satisfying

liminf UX(x) > UX(x9).
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Our first aim is to prove the following theorem.



