HIROSHIMA MATH. J. 9 (1979), 157–162

Extension Theorems on Some Generalized Nilpotent Lie Algebras

Toshiharu IKEDA and Yoshimi KASHIWAGI (Received September 14, 1978)

1. Introduction

Let L be a Lie algebra over a field. It is well known that if I is a nilpotent ideal of L and L/I^2 is nilpotent, then L is nilpotent. In group theory a theorem asserting that for a normal nilpotent subgroup N of a group G a property of G/N'passes to G is termed one of Hall's type, and it has been shown for several properties including the nilpotency ([5], [6, p. 57]). In connection with these, it seems interesting for us to investigate the Lie-theoretic analogue of a theorem of Hall's type. The aim of this paper is to show the following extension theorem in Lie algebras: Let \mathfrak{X} be one of the classes $\mathfrak{Z}, \mathfrak{S}, \mathfrak{LR}, \mathfrak{Ft}, \mathfrak{B}, \mathfrak{Gr}$ of Lie algebras. If I is a nilpotent ideal of L and L/I^2 lies in \mathfrak{X} , then L lies in \mathfrak{X} .

2. Notations

Throughout this paper we consider Lie algebras over an arbitrary field Φ which are not necessarily finite-dimensional.

Let L be a Lie algebra and H be a subalgebra of L. We use the following notations as usual.

H si L: H is a subideal of L.

H asc *L*: *H* is an ascendant subalgebra of *L*, i.e., there exists an ascending series $\{H_{\beta}: 0 \leq \beta \leq \alpha\}$ of subalgebras of *L*, indexed by ordinals $\beta \leq \alpha$, such that $H_0 = H$, $H_{\alpha} = L$, $H_{\beta} \lhd H_{\beta+1}$ for all $\beta < \alpha$, and $H_{\lambda} = \bigcup_{\beta < \lambda} H_{\beta}$ for all limit ordinals $\lambda \leq \alpha$.

 $\zeta_{\alpha}(L)$: the α -th term of the upper central series of L (α : an ordinal). In particular $\zeta_1(L)$ is the center of L.

 $\zeta_*(L)$: the hypercenter of L.

We say that $x \in L$ is a right Engel element if for each $y \in L$ there exists a non-negative integer n = n(x, y) such that [x, y] = 0.

r(L): the set of right Engel elements of L.

Let us recall several classes of Lie algebras.

 \mathfrak{N} : the class of nilpotent Lie algebras.

3: the class of hypercentral Lie algebras.