Regular Rings, V-Rings and their Generalizations

Yasuyuki Hirano and Hisao Tominaga
(Received September 5, 1978)

In this paper, the notions of right p.p. rings, right $C P P$-rings and right CPF-rings, introduced primarily for rings with identity, will be defined for s unital rings. One of the purposes of this paper is to extend the principal results in [19] to s-unital rings so as to improve several previous results obtained in [1518] (Theorems 1-5). Furthermore, we shall present a characterization of an s-unital right CPP-ring (Theorem 6), which will deduce the main theorem in [6].

Throughout A will represent a ring (possibly without identity). Given a right (resp. left) ideal I of A, I^{*} will denote the intersection of all maximal right (resp. left) ideals of A containing I. If M is a right (resp. left) A-module and S is a subset of A, then we set $\ell_{M}(S)=\{u \in M \mid u S=0\}$ (resp. $r_{M}(S)=\{u \in M \mid S u=0\}$). As usual, we write $\ell(S)=\ell_{A}(S)$ and $r(S)=r_{A}(S)$. As for other notations and terminologies used in this paper, we follow the previous ones [15] and [16].

1. Preliminaries. Following [15], a non-zero right (resp. left) A-module M is said to be s-unital if $u \in u A$ (resp. $u \in A u$) for each $u \in M$. If A_{A} (resp. ${ }_{A} A$) is s-unital, A is called a right (resp. left) s-unital ring. In case A is right and left s-unital, we merely say s-unital. We begin by stating a lemma which will be used repeatedly in what follows.

Lemma 1 ([15, Theorem 1] and [11, Lemma 1 (a)]). If F is a finite subset of a right s-unital ring (resp. an s-unital ring) A, then there exists an element $e \in A$ such that $a e=a(r e s p . e a=a e=a)$ for all $a \in F$.

A right A-module M is said to be p-injective if for any principal right ideal $\mid a)$ of A and $f: \mid a)_{A} \rightarrow M_{A}$ there exists an element $u \in M$ such that $f(x)=u x$ for all $x \in \mid a)$. As is well known, A is a regular ring if and only if every right A module is p-injective.

Lemma 2 (cf. [4, Proposition 1.7 and Corollary 1.9]). Let A be a right s-unital ring, and M_{A} an s-unital module. If M_{A} is p-injective then, for each $a \in A$, there holds $\ell_{M}(r(a))=M a$, and conversely. In particular, for a domain A with 1, a unital module M_{A} is p-injective if and only if M_{A} is divisible.

Proof. Assume that M_{A} is p-injective. Given $u \in \ell_{M}(r(a))$, there exists

