On the Jacobson Radicals of Infinite Dimensional Lie Algebras

Noriaki KAMIYA (Received July 10, 1978)

1.

Recently the infinite-dimensional Lie algebras have been investigated by several mathematicians. The purpose of this paper is to study the Jacobson radicals of infinite-dimensional Lie algebras.

We employ the notation and terminology in [1].

The author would like to express his thanks to Professor S. Tôgô for his suggestions.

We denote by L a not necessarily finite-dimensional Lie algebra over a field \mathfrak{k} throughout the paper.

DEFINITION. The Jacobson radical of L is defined to be the intersection of all the maximal ideals of L, with the convention that this intersection is L if there are no maximal ideals. We denote the Jacobson radical of L by J_L .

LEMMA 1. $J_L \subseteq L^2$.

PROOF. Let $L \neq L^2$. If $x \notin L^2$, take a subspace M of L which is complementary to $\langle x \rangle$ and contains L^2 . Then M is a maximal ideal of L. Hence $x \notin J_L$. Therefore $J_L \subseteq L^2$.

We introduce the following class \Re : A Lie algebra L belongs to the class \Re if and only if

$$[L/N, L/N] \subsetneq L/N$$

for every proper ideal N of L.

It is clear that $\mathbb{E}\mathfrak{A} \subseteq \mathfrak{R}$.

LEMMA 2. For an arbitrary ideal K of L belonging to \Re , $J_L \supseteq L^2 \cap K$.

PROOF. We may assume that $K \neq 0$. Suppose that there is a maximal ideal I of L such that

$$I \stackrel{\text{\tiny{1}}}{=} L^2 \cap K.$$

Then $I \stackrel{\text{\tiny def}}{=} L^2$ and $I \stackrel{\text{\scriptsize def}}{=} K$. Thus L = I + K. We see that