The Minimal Condition for Subideals of Lie Algebras Implies that Every Ascendant Subalgebra is a Subideal

Ian Stewart
(Received June 16, 1978)

Tôgô [5] has shown that various minimal conditions on ascendant subalgebras of Lie algebras are equivalent to each other. These results generalize earlier ones on minimal conditions for subideals (Amayo and Stewart [2], Stewart [4]). The purpose of this note is to point out a stronger result:

Theorem. If L is a Lie algebra satisfying the minimal condition for subideals, then every ascendant subalgebra of L is a subideal.

Proof. We use the notation of Amayo and Stewart [1]. Suppose that A asc L. Let B be a subideal of L, minimal subject to $A \leq B$. Then the ideal closure A^{B} of A in B must be B itself. Let K be the core of A in B (the largest ideal of B contained in A). Passing to the quotient B / K we may assume that A is corefree, and the condition $A^{B}=B$ remains valid. Let F be the unique ideal of B minimal with respect to B / F having finite dimension (see Amayo and Stewart [1] p. 165). Then $F+A$ si B so, by definition of B, we have $F+A=B$.

Let $Z=\zeta_{1}(F)$. Then $Z \cap A$ is idealized both by F and by A, so is an ideal of B. Since A is corefree in B we have $Z \cap A=0$.

If $F \neq Z$, choose M minimal subject to $M \triangleleft B, F \geq M>Z$. By [1] theorem 8.2.3 p. 165, M / Z is infinite-dimensional simple. If $A \cap M \neq 0$ then $(A \cap M)$ $+Z / Z$ asc M / Z. By Levic [3] a simple Lie algebra can have no nontrivial ascendant subalgebras, so we have $A \cap M+Z=Z$ or $A \cap M+Z=M$. But in the first case $A \cap M=A \cap Z=0$. In the second, $A \cap M \cong M / Z$ which is simple, and $A \cap M$ asc B. But [1] proposition 1.3 .5 p. 11 implies that $A \cap M \triangleleft B$, contrary to A being corefree.

Hence $A \cap M=0$. Now $A+Z$ asc $A+M$. Consider an ascending series from $A+Z$ to $A+M$, which must be of the form $\left(A+X_{\alpha}\right)_{\alpha \leq \sigma}$ where $\left(X_{\alpha}\right)_{\alpha \leq \sigma}$ is a series from Z to M. Since M / Z is simple, Levič [3] implies that $A+Z \triangleleft A+M$. It follows that $A \leq C_{B}(M / Z)$, since $[M, A] \leq M \cap(A+Z)=(M \cap A)+Z=Z$. But $C_{B}(M / Z) \triangleleft B=A^{B}$, so $B=C_{B}(M / Z)$, which is absurd since $M \leq B$ and M / Z is simple and infinite-dimensional. This is a contradiction.

Thus the case $F \neq Z$ does not occur, so $F=Z$ and $F=F^{2}=Z^{2}=0$. Hence $A=B$ and A is a subideal of L as claimed.

