Estimates on the Support of Solutions of Elliptic Variational Inequalities in Bounded Domains

Naoki Yamada

(Received May 29, 1978)

1. Introduction

To the general question proposed in J. L. Lions [6] as to when the solution of a variational inequality has a compact support, H. Brezis [4], A. Bensoussan and J. L. Lions [1], H. Brezis and A. Friedman [5] have given various affirmative answers for solutions of stationary or evolutionary variational inequalities.

In the present note we shall consider the solution u of an elliptic (stationary) variational inequality of the form

(VI)
$$\begin{aligned} & -\Delta u + \alpha u \ge f, \quad u \ge \Psi, \\ & (u - \Psi)(-\Delta u + \alpha u - f) = 0 \quad \text{in } \Omega \end{aligned}$$

under various boundary conditions, where Ω is a bounded domain in \mathbb{R}^N , Δ denotes the Laplace operator, and α is a positive constant.

By a solution u of (VI), the domain Ω is divided into two subdomains Ω_1 and Ω_2 such that

$\Omega_1 = \{ x u = \Psi \}$	(coincidence set),
$\Omega_2 = \{x -\Delta u + \alpha u = f\}$	(continuation set).

Recently, A. Bensoussan, H. Brezis and A. Friedman [2] obtained an estimate on the size of Ω_1 under the Dirichlet boundary condition.

The purpose of the present note is to obtain some estimates on the size of Ω_1 under other boundary conditions (Neumann, mixed and Signorini). Our main results in this note are stated in section 3 (Theorems 3.2, 3.3 and 3.4). Section 4 is devoted to the study of the behavior of solutions of (VI) near the boundary of Ω . It seems interesting to the author that estimates of the same type can be derived for these different boundary conditions by computing only one comparison function.

2. A comparison theorem

Let Ω be a bounded domain in \mathbb{R}^N with smooth boundary Γ . For a maximal