An Extended Airy Function of the First Kind

Mitsuhiko Конмо

(Received January 17, 1979)

1. Introduction

The linear differential equation

$$
\begin{equation*}
z^{n} \frac{d^{n} y}{d z^{n}}-z^{q} y=0 \tag{1.1}
\end{equation*}
$$

where z is a complex variable and q is an integer larger than n, has an extended form of the well-known Airy equation. For $n=2$ and $q=3$ (1.1) is exactly the Airy equation which has a long history of investigations. Two linearly independent entire solutions of the Airy equation $\operatorname{Ai}(z)$ and $B i(z)$ are called the Airy functions of the first and second kind, respectively. Their properties have been studied in great detail (see [5, 6]). For instance, we here give a brief exposition of the global behavior of the Airy function of the first kind

$$
\begin{equation*}
A i(z)=\sum_{m=0}^{\infty} \frac{z^{3 m}}{3^{2 m+2 / 3} m!\Gamma\left(m+\frac{2}{3}\right)}-\sum_{m=0}^{\infty} \frac{z^{3 m+1}}{3^{2 m+4 / 3} m!\Gamma\left(m+\frac{4}{3}\right)} . \tag{1.2}
\end{equation*}
$$

$A i(z)$ is recessive on the positive real axis $\arg z=0$ and admits the following asymptotic behavior as z tends to infinity:

$$
\begin{array}{r}
A i(z) \sim \frac{-i}{2 \sqrt{\pi}} \exp \left(\frac{2}{3} z^{\frac{3}{2}}\right) z^{-\frac{1}{4}} \sum_{s=0}^{\infty}\left(\frac{3}{4}\right)^{s} \frac{\Gamma\left(s+\frac{1}{6}\right) \Gamma\left(s+\frac{5}{6}\right)}{\Gamma(s+1) \Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)} z^{-\frac{3}{2} s} \\
\text { in }-\frac{4}{3} \pi<\arg z<-\pi \\
A i(z) \sim \frac{1}{2 \sqrt{\pi}} \exp \left(-\frac{2}{3} z^{\frac{3}{2}}\right) z^{-\frac{1}{4}} \sum_{s=0}^{\infty}\left(-\frac{3}{4}\right)^{s} \frac{\Gamma\left(s+\frac{1}{6}\right) \Gamma\left(s+\frac{5}{6}\right)}{\Gamma(s+1) \Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)} z^{-\frac{3}{2} s} \tag{1.3}\\
\text { in }-\pi<\arg z<\pi, \\
A i(z) \sim \frac{i}{2 \sqrt{\pi}} \exp \left(\frac{2}{3} z^{\frac{3}{2}}\right) z^{-\frac{1}{4}} \sum_{s=0}^{\infty}\left(\frac{3}{4}\right)^{s} \frac{\Gamma\left(s+\frac{1}{6}\right) \Gamma\left(s+\frac{5}{6}\right)}{\Gamma(s+1) \Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)} z^{-\frac{3}{2} s} \\
\text { in } \pi<\arg z<\frac{4}{3} \pi
\end{array}
$$

