Isometry Groups of Negatively Pinched 3-Manifolds

Midori S. Goтo* and Morikuni Goto
(Received October 24, 1978)

§ 1. Introduction

Let M be a Riemannian manifold. For a 2-plane π tangent to M, let $k(\pi)$ denote the sectional curvature at $\pi . \quad M$ is said to be negatively pinched if there exist negative numbers c_{1} and c_{2} such that $c_{1} \leq k(\pi) \leq c_{2}<0$ for all π.

In [8], p. 152, Margulis gave some unsolved problems. Among them we find:

Problem. Let M be a simply connected, symmetric space of noncompact type. Let Γ_{1} and Γ_{2} be discrete groups of isometries of M with the factor spaces of finite volume. Is the ratio of the volume $\operatorname{vol}\left(M / \Gamma_{1}\right): \operatorname{vol}\left(M / \Gamma_{2}\right)$ rational?

The main purpose of this paper is to establish the following theorem by which in particular the analogous problem to the above for negatively pinched 3 -manifolds can be reduced to the case of hyperbolic spaces.

Thborem. Let M be a complete, simply connected, negatively pinched Riemannian manifold of dimension three. Suppose that there exists a discrete group Γ of isometries of M such that the factor space M / Γ is of finite volume. Then either M is of constant curvature or the group $I(M)$ of all isometries of M is discrete.

Under the assumptions of the theorem, let G denote the identity component of the Lie group $I(M)$. Then by Heintze, G is a semisimple Lie group without compact factor and with trivial center, see $\S 2$, Lemma 6. Now suppose that $G \neq\{1\}$. Then we can see easily that G must be isomorphic with the adjoint group of either $S L(2, \mathbf{C})$ or $S L(2, \mathbf{R})$, and if we can exclude the latter case, the theorem follows directly. For the purpose we start with a little more general setting and construct a warped product of a certain symmetric space and a straight line \mathbf{R}, which does not admit a discrete group Γ of isometries with the factor space of finite volume. The exact statement is given in Proposition of $\S 3$.

§2. Lemmas

For the later use we shall state some known results.

[^0]
[^0]: * Supported in part by NSF grant MCS77-18723.

