On Oriented G-Manifolds of Baas-Sullivan Type

Dedicated to Professor A. Komatu on his 70th birthday

Tamio Hara
(Received February 10, 1979)

Introduction

N. A. Baas [1] has studied a bordism theory based on manifolds with a certain type of singularities, by reformulating a theory due to D. Sullivan.

The purpose of this paper is to study corresponding equivariant oriented bordism theories. By the same way as $[1 ; \S 2]$, we can define the notion of oriented \mathscr{S}_{n}-manifolds for each singularity class $\mathscr{S}_{n}=\left\{P_{0}=p t, P_{1}, \ldots, P_{n}\right\}$ of closed oriented manifolds, and those with G-actions for each finite group G while G acts trivially on P_{i}. Thus we obtain naturally a bordism group $\Omega\left(\mathscr{S}_{n}\right)_{*}(X, Y)$ based on oriented \mathscr{S}_{n}-manifolds with free G-actions for each pair (X, Y) of G spaces. When $n=0, \Omega\left(\mathscr{S}_{0}\right)_{*}^{G}(-)$ coincides with the usual equivariant bordism group $\Omega_{*}^{G}(-)$, due to Conner-Floyd [3], based on (closed) oriented manifolds with free G-actions.

We study in $\S 1$ (and §5) some basic properties of oriented \mathscr{S}_{n}-manifolds and the above bordism group, and obtain an exact sequence in Theorem 1.16 which is similar to that in [1; Th. 3.2]. In case that $G=\boldsymbol{Z}_{p}$ for odd prime p, we can define in $\S 2$ the Smith homomorphism, and extend some results on $\Omega_{*}^{G}(-)$, due to P. E. Conner [2] and C. M. Wu [8], to those on $\Omega\left(\mathscr{S}_{n}\right)_{*}^{G}(-)$ for each n. Furthermore, we obtain in $\S 3$ a theorem on the Ω_{*}-module structure of $\Omega\left(\mathscr{S}_{1}\right)_{{ }^{p}}{ }^{p}$ for an odd dimensional manifold P_{1} of Dold type. Finally in $\S 4$, we study oriented \mathscr{S}_{n}-manifolds with semi-free G-actions.

The author would like to express his hearty thanks to Professor N. Shimada and Professor M. Sugawara for giving him the basic ideas and many helpful suggestions.

§ 1. Oriented singular $\left(G, \mathscr{S}_{n}\right)$-manifolds

Throughout this paper, we will work in the category of compact oriented smooth manifolds, and we allow the manifolds to have general corners, (see [4] for manifolds with corners, whose coordinate neighborhoods are defined by using open subsets of $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \boldsymbol{R}^{m} \mid x_{1} \geqq 0, \ldots, x_{m} \geqq 0\right\}$).

Definition 1.1. Let an oriented manifold V and oriented submanifolds

