Нікозніма Матн. J. 9 (1979), 601–622

On Oriented G-Manifolds of Baas-Sullivan Type

Dedicated to Professor A. Komatu on his 70th birthday

Tamio Hara

(Received February 10, 1979)

Introduction

N. A. Baas [1] has studied a bordism theory based on manifolds with a certain type of singularities, by reformulating a theory due to D. Sullivan.

The purpose of this paper is to study corresponding equivariant oriented bordism theories. By the same way as [1; §2], we can define the notion of oriented \mathscr{S}_n -manifolds for each singularity class $\mathscr{S}_n = \{P_0 = \text{pt}, P_1, ..., P_n\}$ of closed oriented manifolds, and those with G-actions for each finite group G while G acts trivially on P_i . Thus we obtain naturally a bordism group $\Omega(\mathscr{S}_n)_*^{\mathcal{G}}(X, Y)$ based on oriented \mathscr{S}_n -manifolds with free G-actions for each pair (X, Y) of Gspaces. When n=0, $\Omega(\mathscr{S}_0)_*^{\mathcal{G}}(-)$ coincides with the usual equivariant bordism group $\Omega_*^{\mathcal{G}}(-)$, due to Conner-Floyd [3], based on (closed) oriented manifolds with free G-actions.

We study in §1 (and §5) some basic properties of oriented \mathscr{S}_n -manifolds and the above bordism group, and obtain an exact sequence in Theorem 1.16 which is similar to that in [1; Th. 3.2]. In case that $G = \mathbb{Z}_p$ for odd prime p, we can define in §2 the Smith homomorphism, and extend some results on $\Omega_*^G(-)$, due to P. E. Conner [2] and C. M. Wu [8], to those on $\Omega(\mathscr{S}_n)_*^G(-)$ for each n. Furthermore, we obtain in §3 a theorem on the Ω_* -module structure of $\Omega(\mathscr{S}_1)_{*}^{\mathbb{Z}_p}$ for an odd dimensional manifold P_1 of Dold type. Finally in §4, we study oriented \mathscr{S}_n -manifolds with semi-free G-actions.

The author would like to express his hearty thanks to Professor N. Shimada and Professor M. Sugawara for giving him the basic ideas and many helpful suggestions.

§1. Oriented singular (G, \mathcal{S}_n) -manifolds

Throughout this paper, we will work in the category of compact *oriented* smooth manifolds, and we allow the manifolds to have general corners, (see [4] for manifolds with corners, whose coordinate neighborhoods are defined by using open subsets of $\{(x_1, ..., x_m) \in \mathbb{R}^m | x_1 \ge 0, ..., x_m \ge 0\}$).

DEFINITION 1.1. Let an oriented manifold V and oriented submanifolds