Exterior Functions and Strictly Continuous Homomorphisms in the Algebra of Bounded Analytic Functions

C. W. KENNEL and L. A. RUBEL¹⁾ (Received October 5, 1978)

Let G be a bounded region in the complex plane, and let $\beta(G)$ be the algebra of bounded analytic functions on G, in the strict topology. The strict topology was introduced by Buck (see [B]) — for a survey of this and related matters see [R]. Suffice it to say that the strict topology is the strongest topology on the bounded holomorphic functions for which a sequence is convergent if and only if it is uniformly bounded and pointwise convergent to its limit (see [RR], Corollary, p. 172). A function $f \in \beta(G)$ is called exterior (see [RS], p. 72) when the principal ideal generated by f is dense in $\beta(G)$. Examples can be found (we give one later) of bounded regions G with $0 \in \partial G$ such that f(z) = z is not exterior. On the other hand, if ∂G consisted of isolated Jordan curves, say, then this function z would certainly be exterior (see [RS], Theorem 5.17). In this paper, we consider $f(z) = z - \lambda$, $\lambda \in C$, and discuss the principal ideal that it generates. We prove that aside from the trivial case where $\lambda \in \overline{G}$, so that $(z - \lambda)$ is a unit in $\beta(G)$, there are exactly three possibilities. We conclude by proving that $(z - \lambda)$ is exterior if and only if there is no strictly continuous multiplicative linear functional in the fiber over λ . We rely heavily in our exposition on results in Gamelin and Garnett's paper [GG] which appeared at about the time our work in this area was being done.

DEFINITION. A point $\lambda \in \partial G$ is called an essential boundary point of G if there is an $f \in \beta(G)$ such that for no region W that contains λ does there exist an extension of f in $\beta(G \cup W)$. (See [RUD], p. 333.)

THEOREM. Let G be a bounded region, all of whose boundary points are essential. Let $\beta(G)$ be the algebra of all bounded analytic functions on G, in the strict topology. For $\lambda \in \overline{G}$, let

$$I(\lambda) = \{(z - \lambda)f : f \in \beta(G)\}.$$

Then exactly one of the following possibilities holds:

- 1) $I(\lambda)$ is dense in $\beta(G)$; that is $(z \lambda)$ is exterior.
- 2) $I(\lambda)$ is closed in $\beta(G)$ and has codimension 1 in $\beta(G)$.

¹⁾ The research of the second author was partially supported by a grant from the National Science Foundation.