HIROSHIMA MATH. J. 10 (1980), 185–187

A note on Gruenberg algebras

Naoki Каwамото

(Received September 5, 1979)

1. Let $\rho(L)$, e(L) and $\overline{e}(L)$ denote respectively the Hirsch-Plotkin radical, the sets of left Engel and bounded left Engel elements of a Lie algebra L over a field \mathfrak{k} . The classes of abelian, nilpotent and solvable Lie algebras over \mathfrak{k} are denoted respectively by \mathfrak{A} , \mathfrak{N} and $\mathfrak{E}\mathfrak{A}$. If \mathfrak{X} is a class of Lie algebras, then $\mathfrak{L}\mathfrak{X}$ and $\mathfrak{k}\mathfrak{X}$ denote respectively the classes of locally \mathfrak{X} -algebras and algebras with ascending \mathfrak{X} -series.

Simonjan [3] has shown that the class of Gruenberg algebras equals $\pounds \mathfrak{A} \cap \mathfrak{L}\mathfrak{N}$ over a field of characteristic 0. Amayo and Stewart have asked the following among "Some open questions" in [1]:

Question 40. Over a field of characteristic p>0, suppose that $L \in \pounds \mathfrak{A} \cap L\mathfrak{R}$. L \mathfrak{R} . Is it true that $x \in L$ implies $\langle x \rangle$ asc L?

In this note we shall give an affirmative answer to this question. This will be obtained as a collorary of the following theorem, which is proved over a field of characteristic 0 in [1, Theorem 16.4.2].

THEOREM 1. Let L be a Lie algebra over a field t of arbitrary characteristic. (a) If $L \in \mathfrak{M}$, then $\rho(L) \subseteq \mathfrak{e}(L) = \{x \in L \mid \langle x \rangle \text{ asc } L\}$.

(b) If $L \in \mathbb{R}\mathfrak{A}$, then $\overline{\mathfrak{e}}(L) = \{x \in L \mid \langle x \rangle \text{ si } L\}$.

COROLLARY Let L be a Lie algebra over a field \mathfrak{t} of arbitrary characteristic belonging to $\mathfrak{t}\mathfrak{A} \cap \mathfrak{L}\mathfrak{N}$. Then $x \in L$ implies $\langle x \rangle$ asc L.

We employ notations and terminology in [1]. All Lie algebras are not necessarily finite-dimensional over a field \mathfrak{k} of arbitrary characteristic unless otherwise specified.

2. We show the following lemma on ascending series of a Lie algebra, which is an extension of Lemma 16 in [2].

LEMMA. Let L be a Lie algebra and $x \in e(L)$. Assume that L has an ascending \mathfrak{X} -series where $\mathfrak{X} = \mathfrak{A}$, $\mathfrak{L}\mathfrak{N}$ or $\mathfrak{L}\mathfrak{E}\mathfrak{A}$. Then L has an ascending \mathfrak{X} -series with terms idealized by x.

PROOF. Let $(L_{\alpha})_{\alpha \leq \lambda}$ be an ascending \mathfrak{X} -series of L with an ordinal λ . Let H_{α} be the sum of $\langle x \rangle$ -invariant subspaces of L_{α} ($\alpha \leq \lambda$). Then H_{α} is the largest $\langle x \rangle$ -invariant subalgebra of L_{α} (cf. [2, Lemma 15]). Clearly $H_0 = L_0 = 0$,