Unitary representations and kernel functions associated with boundaries of a bounded symmetric domain

Toru INOUE (Received July 17, 1979)

1. Introduction

Let \mathscr{D} be the open unit disc in C and let \mathscr{R} be its boundary. Then the group G=SU(1, 1) of all two-by-two complex matrices of the form $\begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}$ with $|a|^2 - |b|^2 = 1$ acts transitively both on \mathscr{D} and \mathscr{R} by linear fractional transformations

$$z \longrightarrow g \cdot z = \frac{az+b}{\overline{b}z+\overline{a}}$$
 if $g = \begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}$.

The discrete series representations of G can be realized on Hilbert spaces of holomorphic (or anti-holomorphic) functions on \mathcal{D} , while the principal continuous series representations can be realized on $L^2(\mathcal{B})$. Every member of the principal continuous series representations of G is irreducible except one, say V, which is given by

$$(V(g)f)(u) = j(g^{-1}, u)^{1/2} f(g^{-1} \cdot u), \quad f \in L^2(\mathcal{B}), \ g \in G, \ u \in \mathcal{B}$$

where $j(g^{-1}, u)$ denotes the complex Jacobian of the holomorphic map $z \to g^{-1} \cdot z$ at $u(j(g^{-1}, u) = (\overline{b}u + \overline{a})^{-2}$ if $g^{-1} = \begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}$).

The so-called holomorphic discrete series representations of G are parametrized by the integers $n \ge 2$, and the *n*-th representation T_n is realized on the Hilbert space

$$H_n = \left\{ \text{holomorphic functions } f \text{ on } \mathscr{D}; \int_{\mathscr{D}} |f(z)|^2 (1 - |z|^2)^{n-2} dx dy < \infty \right\}$$

with group action

$$(T_n(g)f)(z) = j(g^{-1}, z)^{n/2} f(g^{-1} \cdot z), f \in H_n, g \in G, z \in \mathcal{D}.$$

Note that in the case n=1 we have $H_1 = \{0\}$. However, one can associate to the integer n=1 a representation of G that is similar in appearance to those above. Indeed, if we let $H^2(\mathcal{D})$ be the Hardy space for \mathcal{D} , i.e.,