Necessary and sufficient condition for eventual decay of oscillations in general functional equations with delays

Bhagat SINGH (Received February 6, 1979) (Revised June 6, 1979)

1. Introduction

Our main purpose in this paper is to study the equation

(1)
$$(r(t)y'(t))^{(n-1)} + a(t)h(y(g(t))) = f(t)$$

and present a necessary and sufficient condition so that all oscillatory solutions of equation (1) converge to zero asymptotically.

In [2, 3], this author showed that subject to

(2)
$$\int_{0}^{\infty} t^{n-2} |a(t)| dt < \infty$$

(3)
$$\int_{0}^{\infty} t^{n-2} |f(t)| dt < \infty$$

and boundedness of $(t^{n-k})/r(t)$, $0 \le k < 1$ for $t \in [T, \infty)$, T > 0 all oscillatory solutions approach zero as $t \to \infty$. There are examples given in [2] to show that condition on r(t) cannot be weakened. This restriction on r(t) eliminates a very important class of equations of type (1) that requires $\int_{\infty}^{\infty} 1/r(t)dt = \infty$. We find a set of conditions in Theorem 3.2 which essentially ensure that all oscillatory solutions of (1) eventually vanish while retaining $\int_{\infty}^{\infty} 1/r(t)dt = \infty$. We, then, use this theorem to find a necessary and sufficient condition to accomplish the stated goal of this work in section 4.

2. Definition and assumptions

Unless otherwise stated, following assumptions apply throughout this work:

- (i) g(t), r(t), a(t), f(t) and h(t) are $R \rightarrow R$ and continuous, R being the real line;
- (ii) r(t) > 0, $r'(t) \ge 0$ for $t \ge t_0$ where $t_0 > 0$ will be assumed fixed;
- (iii) th(t)>0, $t\neq 0$ and there exists an m>0 such that $\frac{h(t)}{t} \leq m$ for $t\neq 0$;