HIROSHIMA MATH. J. 10 (1980), 375–379

Z-transforms and noetherian pairs

Shiroh Ітон

(Received December 24, 1979)

Let A be a noetherian ring, and let Z be a subset of Spec (A) which is stable under specialization. Assume that every element of Z is a regular prime ideal. Let M be an A-module such that every A-regular element is M-regular. The Z-transform T(Z, M) of M is a subset of $M \bigotimes_A Q(A)$ defined as follows:

$$T(Z, M) = \{x \in M \otimes_A Q(A) \mid V(M:_A x) \subseteq Z\},\$$

where Q(A) is the total quotient ring of A, $M:_A x = \{a \in A \mid ax \in M\}$, and $V(M:_A x)$ is the set of prime ideals of A containing $M:_A x$. Since $A:_A (x+y)$ and $A:_A xy$ contain $(A:_A x)(A:_A y)$ for every x and y in Q(A), T(Z, A) is a subring of Q(A)which contains A. It is easy to see that T(Z, M) is a T(Z, A)-module. Note that $T(Z, M) = \Gamma(X, \mathscr{H}^0_{X/Z}(\tilde{M}))$ where $X = \operatorname{Spec}(A)$ and \tilde{M} is a quasi-coherent \mathcal{O}_X module associated to M (cf. [2], Chap. IV, (5.9)).

In this paper, we shall give necessary and sufficient conditions on A so that (A, T(Z, A)) is a noetherian pair. For noetherian rings R and S with $R \subseteq S$, we say that (R, S) is a noetherian pair if every ring $T, R \subseteq T \subseteq S$, is noetherian. If Z is the set of all regular maximal ideals of A, then T(Z, A) is the global transform A^{g} of A introduced by Matijevic in [3]. He proved that (A, A^{g}) is a noetherian pair if A is reduced.

Let B = A/I where I is an ideal of A. Assume that $Ass_A(B) \subseteq Ass_A(A)$. Let $Z' = \{\mathfrak{p}/I \mid \mathfrak{p} \in Z \text{ and } \mathfrak{p} \supseteq I\}$. Then it is clear that every element of Z' is a regular prime ideal of B and T(Z, B) = T(Z', B). Moreover we have a natural ring homomorphism $\phi: T(Z, A) \rightarrow T(Z, B)$ whose kernel is $T(Z, I) = T(Z, A) \cap IQ(A)$. It should be remarked that $\phi(x)z = xz$ for every $x \in T(Z, A)$ and $z \in T(Z, B)$. In the case that Z is the set of all regular maximal ideals of A, T(Z, B) is not the global transform of B in general. However if every maximal ideal of A is regular, then $T(Z, B) = B^g$.

Our main result is the following

THEOREM. Let A be a noetherian ring, and let Z be a subset of Spec(A) which is stable under specialization. Assume that every element of Z is a regular prime ideal. Then the following conditions on A are equivalent.

(1) (A, T(Z, A)) is a noetherian pair.

(2) (a) $T(Z, A|\mathfrak{p})$ is a finite $A|\mathfrak{p}$ -module for every $\mathfrak{p} \in Ass_A(A)$ such that $A_\mathfrak{p}$ is not reduced, and