The order of the canonical elememt in the J-group of the lens space

Kensô Fujii and Masahiro Sugawara
(Received December 18, 1979)

§ 1. Statement of the result

The standard lens space $\bmod m$ is the orbit manifold

$$
L^{n}(m)=S^{2 n+1} / Z_{m} \quad\left(Z_{m}=\left\{z \in S^{1}: z^{m}=1\right\}\right) .
$$

of the $(2 n+1)$-sphere $S^{2 n+1}\left(\subset C^{n+1}\right)$ by the diagonal action $z\left(z_{0}, \ldots, z_{n}\right)=\left(z z_{0}\right.$, $\left.\ldots, z z_{n}\right)$. Let η be the canonical complex line bundle over $L^{n}(m)$, i.e., the induced bundle of the canonical complex line bundle over the complex projective space $C P^{n}=S^{2 n+1} / S^{1}$ by the natural projection $L^{n}(m) \rightarrow C P^{n}$.

Then, the purpose of this note is to prove the following
Theorem 1.1. Let p be an odd prime and r a positive integer. Then, the order of the J-image

$$
J(r \eta-2) \in \tilde{J}\left(L^{n}\left(p^{r}\right)\right)
$$

of the stable class of the real restriction $r \eta$ of the canonical line bundle η is equal to

$$
p^{f(n, r)}, f(n, r)=\max \left\{s+\left[n / p^{s}(p-1)\right] p^{s}: 0 \leqq s<r \text { and } p^{s}(p-1) \leqq n\right\},
$$

where $f(n, r)=\max \varnothing=0$ if $n<p-1$.
We notice that the above theorem is valid also for the case $p=2$ and $r \geqq 2$, by the result in the forthcoming paper [2].

It is proved by J. F. Adams [1] and D. Quillen [4] that

$$
J(X) \cong K O(X) / \sum_{k}\left(\cap_{e} k^{e}\left(\Psi^{k}-1\right) K O(X)\right)
$$

(X : finite dimensional $C W$-complex) where Ψ^{k} is the Adams operation. Based on this result, we prove the theorem in $\S 2$ and study more generally the order of $\operatorname{Jr}\left(\eta^{i}-1\right)(i \geqq 1)$ in $\S 3$, by using the partial results obtained in [3].

§2. Proof of Theorem 1.1

Let p be an odd prime. Consider the $2 n$-skeleton

