HIROSHIMA MATH. J. 10 (1980), 311-322

Modularity in Lie algebras

Ralph K. AMAYO and Jochen SCHWARZ (Received October 31, 1979)

A subalgebra M of a Lie algebra L is termed modular in L (M m L) if M is a modular element in the lattice formed by the subalgebras of L, i.e., if

(*) $\langle M, U \rangle \cap V = \langle U, M \cap V \rangle$ for all $U, V \leq L$ with $U \leq V$ and

(**) $\langle M, U \rangle \cap V = \langle U \cap V, M \rangle$ for all $U, V \leq L$ with $M \leq V$ hold.

Simple examples for modular subalgebras of a Lie algebra L are the quasiideals of $L-Q \leq L$ is called a quasi-ideal of $L(Q \neq L)$ if Q is permutable with every subspace R of L, i.e., if $[Q, R] \subseteq Q+R$ for all $R \subseteq L([1], p. 28)$.

That the reverse implication is not true is shown by the Lie algebra $L(L = \langle e \rangle + \langle f \rangle + \langle g \rangle)$ defined over a field containing no pair of elements α , β such that $\alpha^2 + \beta^2 = -1$, with the following multiplication: [e, f] = g, [f, g] = e, [g, e] = f. L is simple, and every one-dimensional subalgebra of L is maximal and modular in L, but not a quasi-ideal of L.

We prove the following $(M_L$ denotes the core of M in L):

(i) A modular subalgebra M of a Lie algebra L permutable with a solvable subalgebra A of L is a quasi-ideal of M+A — in particular M is a quasi-ideal of L if L is solvable.

(ii) A modular subalgebra M of a finite-dimensional Lie algebra L over any field of characteristic zero is either

a) an ideal of L; or

b) L/M_L is metabelian, every subalgebra of L/M_L is a quasi-ideal, M/M_L is one-dimensional and is spanned by an element which acts as the identity map on $([L, L] + M_L)/M_L$; and $L/([L, L] + M_L)$ is one-dimensional; or

c) M/M_L is two-dimensional and L/M_L is the three-dimensional split simple Lie algebra; or

d) M/M_L is a one-dimensional maximal subalgebra of L/M_L and L/M_L is a three-dimensional non-split simple Lie algebra.

1. Elementary properties of modular subalgebras

The properties 1.1–1.3 hold for modular elements in more general lattices; proofs can be found in [9], where the modular elements are called "Dedekind elements."

PROPOSITION 1.1. Let M be modular in a Lie algebra L and let U be a