Modularity in Lie algebras

Ralph K. Amayo and Jochen Schwarz

(Received October 31, 1979)

A subalgebra M of a Lie algebra L is termed modular in $L(M \mathrm{~m} L)$ if M is a modular element in the lattice formed by the subalgebras of L, i.e., if
(*) $\langle M, U\rangle \cap V=\langle U, M \cap V\rangle$ for all $U, V \leqq L$ with $U \leqq V$ and (**) $\langle M, U\rangle \cap V=\langle U \cap V, M\rangle$ for all $U, V \leqq L$ with $M \leqq V$ hold.

Simple examples for modular subalgebras of a Lie algebra L are the quasiideals of $L-Q \leqq L$ is called a quasi-ideal of $L(Q \mathrm{q} L)$ if Q is permutable with every subspace R of L, i.e., if $[Q, R] \subseteq Q+R$ for all $R \subseteq L$ ([1], p. 28).

That the reverse implication is not true is shown by the Lie algebra $L(L=$ $\langle e\rangle+\langle f\rangle+\langle g\rangle)$ defined over a field containing no pair of elements α, β such that $\alpha^{2}+\beta^{2}=-1$, with the following multiplication: $[e, f]=g,[f, g]=e,[g, e]=$ f. L is simple, and every one-dimensional subalgebra of L is maximal and modular in L, but not a quasi-ideal of L.

We prove the following (M_{L} denotes the core of M in L):
(i) A modular subalgebra M of a Lie algebra L permutable with a solvable subalgebra A of L is a quasi-ideal of $M+A$ - in particular M is a quasi-ideal of L if L is solvable.
(ii) A modular subalgebra M of a finite-dimensional Lie algebra L over any field of characteristic zero is either
a) an ideal of L; or
b) L / M_{L} is metabelian, every subalgebra of L / M_{L} is a quasi-ideal, M / M_{L} is one-dimensional and is spanned by an element which acts as the identity map on $\left([L, L]+M_{L}\right) / M_{L}$; and $L /\left([L, L]+M_{L}\right)$ is one-dimensional; or
c) M / M_{L} is two-dimensional and L / M_{L} is the three-dimensional split simple Lie algebra; or
d) M / M_{L} is a one-dimensional maximal subalgebra of L / M_{L} and L / M_{L} is a three-dimensional non-split simple Lie algebra.

1. Elementary properties of modular subalgebras

The properties 1.1-1.3 hold for modular elements in more general lattices; proofs can be found in [9], where the modular elements are called "Dedekind elements."

Proposition 1.1. Let M be modular in a Lie algebra Land let U be a

