A subspace of Schwartz space on motion groups

Masaaki Eguchi, Keisaku Kumahara and Yôichi Muta (Received May 17, 1980)

§1. Introduction

In the theory of harmonic analysis on semisimple Lie groups, it is important to consider the space \mathscr{C}^p , $0 , which is an <math>L^p$ type subspace of the Schwartz space $\mathscr{C} = \mathscr{C}^2$, and one of the most important problems at present is to determine the image of \mathscr{C}^p by the Fourier transform. For example, if we consider the space $\mathscr{C}^p(X)$ on a symmetric space X, then the image of $\mathscr{C}^p(X)$ is the space of holomorphic functions in the interior of a certain tube domain of a complex space satisfying some boundedness conditions modulo representations of a compact group (see M. Eguchi [1], Theorem 4.8.1). In the present paper we consider the corresponding space to \mathscr{C}^p for the motion groups.

Let K be a compact connected Lie group acting on a finite dimensional real vector space V as a linear group. Let G be the semidirect product group of V and K. We call this group the motion group. Let \hat{V} be the dual space of V and \hat{V}_c the complexification of \hat{V} . We fix a K-invariant inner product (,) of V, an orthonormal basis of V with respect to this inner product and its dual basis. We identify V and \hat{V} with \mathbb{R}^n by these bases. Let $x=(x_1,\ldots,x_n)\in V$ and $\xi=(\xi_1,\ldots,\xi_n)\in \hat{V}$, where $n=\dim V$. We put $|x|^2=(x,x)$. Then $|x|^2=x_1^2+\cdots+x_n^2$. We also put $|\xi|^2=\xi_1^2+\cdots+\xi_n^2$. For any $\epsilon>0$ we define the tube domain F^ϵ by setting

$$F^{\varepsilon} = \{ \zeta = \xi + i\eta \in \hat{V} + i\hat{V} = \hat{V}_{c} ; |\eta| \le \varepsilon \},$$

where $i=(-1)^{1/2}$. We denote by Int F^{ε} the interior of F^{ε} . We put $F^{0}=\operatorname{Int} F^{0}=\widehat{V}$. Then F^{ε} and Int F^{ε} are K-invariant. Let $\mathfrak{H}=L^{2}(K)$ be the Hilbert space of square integrable functions on K with respect to the normalized Haar measure dk. Let $B(\mathfrak{H})$ be the Banach space of all bounded linear operators on \mathfrak{H} . For $\varepsilon>0$ we denote by $\mathscr{L}(F^{\varepsilon})$ the set of all $B(\mathfrak{H})$ -valued C^{∞} functions T on V which satisfy the following conditions:

- (i) The function T extends holomorphically to Int F^{ε} ;
- (ii) for any $\alpha \in \mathbb{N}^n$, $\ell \in \mathbb{N}$ and for any right invariant differential operators y, y' on K

$$\sup_{\zeta \in \operatorname{Int} F^{\alpha}} (1 + |\zeta|^{2})^{\ell} \|y D_{\zeta}^{\alpha} T(\zeta) y'\| < \infty, \tag{1.1}$$

where $D_{\zeta}^{\alpha} = \frac{\partial |\alpha|}{\partial \zeta_{1}^{\alpha_{1}} \cdots \partial \zeta_{n}^{\alpha_{n}}} (\alpha = (\alpha_{1}, ..., \alpha_{n}), |\alpha| = \alpha_{1} + \cdots + \alpha_{n});$

(iii) for all $k \in K$ and for all $\zeta \in Int F^{\varepsilon}$