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§1. Introduction

In the theory of harmonic analysis on semisimple Lie groups, it is important
to consider the space €7, 0<p<2, which is an L? type subspace of the Schwartz
space € =%?2, and one of the most important problems at present is to determine
the image of €7 by the Fourier transform. For example, if we consider the space
%P(X) on a symmetric space X, then the image of ¥?(X) is the space of holo-
morphic functions in the interior of a certain tube domain of a complex space
satisfying some boundedness conditions modulo representations of a compact
group (see M. Eguchi [1], Theorem 4.8.1). In the present paper we consider the
corresponding space to #? for the motion groups.

Let K be a compact connected Lie group acting on a finite dimensional real
vector space V as a linear group. Let G be the semidirect product group of V
and K. We call this group the motion group. Let 7 be the dual space of ¥ and
V. the complexification of V. We fix a K-invariant inner product ( ,) of V, an
orthonormal basis of V with respect to this inner product and its dual basis. We
identify ¥ and Pwith R" by these bases. Let x=(xy,..., X,) € V and é=(¢&,,..., £,)
e P, where n=dim V. We put |x|2=(x, x). Then |x|2=x3+---+x2. We also
put [{|2=¢2+.--+ 2. For any ¢>0 we define the tube domain F¢ by setting

Fe={{=¢+ineP+iP="0,;n <S¢},

where i=(—1)1/2, We denote by Int FZ the interior of F¢&. We put FO=Int F°
=P. Then F* and Int F* are K-invariant. Let $=L2(K) be the Hilbert space
of square integrable functions on K with respect to the normalized Haar measure
dk. Let B($) be the Banach space of all bounded linear operators on §. For
£>0 we denote by Z(F?) the set of all B($)-valued C® functions T on ¥ which
satisfy the following conditions:

(i) The function T extends holomorphically to Int F2;

(ii) for any e N*; 4 € N and for any right invariant differential operators
y, ¥ onK

supgeinere (1 + {12 | yDETQY'l < o0, (L.1)

where D§=01l[00§t-- 005 (= (0ty;...,%n), lo| =0ts + -+ +t,);
(iii) for all ke K and for all { € Int F*



