Programmings with constraints of convex processes

Ryôhei Nozawa

(Received January 13, 1981)

§1. Introduction

Let X and Y be real linear spaces which are in duality with respect to a bilinear functional $((,))_1$ and let Z and W be real linear spaces which are in duality with respect to a bilinear functional $((,))_2$. A standard linear programming problem is:

(P₁) Find
$$M_1 = \inf \{ ((x, y_0))_1; x \in P, Ax - z_0 \in Q \},\$$

where $y_0 \in Y$, $z_0 \in Z$, P and Q are weakly closed convex cones in X and Z respectively and A is a weakly continuous linear mapping from X to Z.

A dual problem of (P_1) is:

(D₁) Find
$$M_1^* = \sup \{((z_0, w))_2; w \in Q^\circ, y_0 - A^* w \in P^\circ\},\$$

where P° and Q° are the polar sets of P and Q respectively and A^{*} is the adjoint mapping of A.

Kretschmer showed

THEOREM 0 ([4; Theorem 3]). (a) If the set $H = \{(Ax - z, r + ((x, y_0))_1); x \in P, z \in Q, r \ge 0\}$ is weakly closed in $Z \times R$ and M_1 or M_1^* is finite, then $M_1 = M_1^*$ and there exists an $x_0 \in P$ such that $Ax_0 - z_0 \in Q$ and $((x_0, y_0))_1 = M_1$.

(b) If there exists an element $w_0 \in Q^\circ$ such that $y_0 - A^*w_0$ is contained in the interior of P° with respect to the Mackey topology, then H is weakly closed.

Later on, Fan [2 and 3] dealt with the case where one of P and Q is merely closed convex. Under some conditions, he showed a duality between (P_1) and (D_2) :

(D₂) sup {(((z_0, w))₂ - 1)/r; $r > 0, w \in Q^\circ, ry_0 - A^*w \in P^\circ$ }.

Furthermore, Levin-Pomerol [5] and Zălinescu [9] were interested in the problems which contain a positively homogeneous functional:

(P₃) inf {((x, y₀))₁; $x \in P$, $(Ax - C) \cap Q \neq \emptyset$ },

where C is a weakly compact convex subset of Z,

(D₃) sup {
$$(g_c(w) - 1)/r; r > 0, w \in Q^\circ, ry_0 - A^*w \in P^\circ$$
},