Essential self-adjointness of Schrödinger operators with potentials singular along affine subspaces

Mikio MAEDA (Received September 19, 1980)

1. Introduction

The aim of this paper is to study the essential self-adjointness of a Schrödinger operator $-\Delta + q(x)$ acting in $L^2(\mathbb{R}^m)$, $m \ge 1$, with the domain $C_0^{\infty}(\mathbb{R}^m \setminus F)$, where F is the union of at most countable number of k_{α} -dimensional $(0 \le k_{\alpha} \le m-1)$ affine subspaces S_{α} ($\alpha \in A$) in \mathbb{R}^m which satisfy

$$r = \inf \{ \operatorname{dist}(S_{\alpha}, S_{\beta}); \alpha, \beta \in A, \alpha \neq \beta \} > 0.$$

Here dist (S_{α}, S_{β}) denotes the distance from S_{α} to S_{β} .

This study is motivated by a theorem proved by B. Simon [6], which is a generalization of the results of H. Kalf and J. Walter [1] and U. W. Schmincke [5]. In this theorem of Simon, which corresponds to the case of $F = \{0\}$, it is assumed that the potential $q = q_1 + q_2$ is a real-valued function with $q_1 \in L^2_{loc}(\mathbb{R}^m \setminus \{0\})$ and $q_2 \in L^\infty(\mathbb{R}^m)$ such that

$$q_1(x) \ge -(1/4)m(m-4)|x|^{-2} \qquad (x \in \mathbb{R}^m \setminus \{0\}).$$

We extend this result to the case of the general F as stated above. The following is our theorem.

THEOREM. Set $\Omega = \mathbb{R}^m \setminus F$ and let $a_j \in C^1(\Omega)$ $(1 \le j \le m)$, $q_1 \in L^2_{loc}(\Omega)$ and $q_2 \in L^\infty(\mathbb{R}^m)$ be real-valued functions. Assume that for some ε $(0 < \varepsilon < r/2)$, q_1 satisfies the following conditions:

(C.1) For each $\alpha \in A$

$$q_1(x) \ge -(1/4)(m-k_{\alpha})(m-k_{\alpha}-4)[\operatorname{dist}(x, S_{\alpha})]^{-2}$$

whenever $0 < \text{dist}(x, S_{\alpha}) < \varepsilon$.

(C.2) q_1 is bounded from below on

$$\bigcap_{\alpha\in A} \{x\in \mathbb{R}^m; \varepsilon \leq \operatorname{dist}(x, S_\alpha)\}.$$

Let $q = q_1 + q_2$. Then the symmetric operator T acting in $L^2(\mathbb{R}^m)$ defined by

$$T = -\sum_{i=1}^{m} (\partial/\partial x_i - ia_i(x))^2 + q(x), \quad D(T) = C_0^{\infty}(\Omega),$$