Normal limits, half-spherical means and boundary measures of half-space Poisson integrals

David H. ARMITAGE (Received August 8, 1980)

1. Introduction and results

Let *D* denote the Euclidean half-space $\mathbb{R}^n \times (0, +\infty)$, where $n \ge 1$, and let ∂D denote the Euclidean boundary of *D*. Arbitrary points of *D* and ∂D are denoted by M = (X, x) and P = (T, 0), respectively, where $X, T \in \mathbb{R}^n$ and $x \in (0, +\infty)$. We write |M| for the Euclidean norm of *M*.

If μ is a signed measure on ∂D such that

(1)
$$\int_{\partial D} (1+|P|)^{-n-1} d|\mu|(P) < +\infty,$$

then the Poisson integral I_{μ} of μ is defined in D by the equation

$$I_{\mu}(M) = 2(s_{n+1})^{-1} \int_{\partial D} x |M - P|^{-n-1} d\mu(P),$$

where s_{n+1} is the surface-area of the unit sphere in \mathbb{R}^{n+1} . The condition (1) is necessary and sufficient for I_{μ} to be harmonic in D (see Flett [5], Theorem 6), and we say that a measure μ on ∂D is of class \mathcal{F} if (1) is satisfied. If, further, μ is non-negative, we write $\mu \in \mathcal{F}^+$.

For each point P of ∂D and each positive number r, we write

$$\sigma(P, r) = \{M \in D : |M - P| = r\},\$$

$$\tau(P, r) = \{Q \in \partial D : |Q - P| < r\},\$$

and we denote surface-area measure on $\sigma(P, r)$ or ∂D by s.

If h is the difference of two non-negative harmonic functions in D, then the function $\mathcal{M}(h, P, \cdot)$, defined on $(0, +\infty)$ by

$$\mathscr{M}(h, P, r) = r^{-n-2} \int_{\sigma(P, r)} xh(M) ds(M),$$

is real-valued and continuous on $(0, +\infty)$ and is bounded on any interval of the form $[a, +\infty)$, where a>0. In the case where $h\geq 0$ in D, the mean $\mathscr{M}(h, P, r)$ is a decreasing function of r and a convex function of r^{-n-1} on $(0, +\infty)$. Papers dealing with this mean include those of Dinghas [2], [3], Kuran [9], [10] and the author [1].