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On strong oscillation of even order differential

equations with advanced arguments
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This paper is concerned with the oscillatory behavior of solutions of linear
functional differential equations of the form

where n is even, p: [α, oo)->(0, oo) is continuous, g: [α, co)-+R is continuously
differentiate, g'(t)>Q and lim^^ g(t)=ao. By a proper solution of equation (1)
is meant a function x: [Tx, oo)-+R which satisfies (1) for all sufficiently large t
and sup{|x(ί)|; f>Γ}>0 for any T>TX. A proper solution of (1) is called
oscillatory if it has arbitrarily large zeros, and nonoscillatory otherwise. Equation
(1) is said to be oscillatory if all of its solutions are oscillatory; otherwise equation
(1) is said to be nonoscillatory. Equation (1) is said to be strongly oscillatory
or strongly nonoscillatory according as the equation

(2) χ(-)(ί) + kp(t)x(g(f)) = 0

is oscillatory or nonoscillatory for every k> 0.
Recently Naito [2] has proved the following theorem for the strong oscil-

lation and nonoscillation of retarded equations of the form (1).

THEOREM 1. Suppose that g(t)<tfor ί>a and

(3) limmft_+00g(t)/t>Q.

Equation (1) is strongly oscillatory if and only if

f°°
(4) lim sup^oo t \ sn~2p(s)ds = oo,

and equation (1) is strongly nonoscillatory if and only if

(5) lim,-^ t (™sn-2p(s)ds = 0.

A question naturally arises as to what will happen for the advanced case of (1).
The purpose of this paper is to give an answer to this question by showing that a
similar conclusion holds in this case.


