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Introduction

The purpose of the present paper is to study Riemannian manifolds admitting

some linearly independent special concircular vector fields and determine geo-

metrical structures of such manifolds. Some results in this paper contain gener-

alizations of results due to Y. Tashiro (see Proposition 7.3 in [4] and Corollaries

2 and 3 in this paper).

We shall define an almost everywhere warped product and give a few ex-

amples in § 1. We also state some properties of this kind of product. In §2,

we shall determine structures of n-dimensional Riemannian manifolds admitting

n linearly independent special concircular vector fields and investigate some

relations between these vector fields and their associated scalar fields. In § 3,

we prove that any Riemannian manifold admitting some linearly independent

special concircular vector fields is an almost everywhere warped product, a part

of which is a space of constant curvature, and obtain some results on the given

manifold. Finally, in §4, we shall give geometrical structures of Riemannian

manifolds mentioned in § 3.

Throughout this paper, we assume that manifolds and quantities are differ-

entiable of class C00.
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for his pertinent criticisms in discussions.

§ 1. Almost everywhere warped products

Let Mί and M 2 be Riemannian manifolds of dimension m and n — m respec-

tively, a n d / a positive-valued differentiable function on Mx. The warped product

M — Mx x fM2 is by definition (see [1]) the product manifold M1 x M 2 endowed

with Riemannian metric

(X, X) = (πtX9 πxX) + /*(π 1x)(π 2X, π2X)

for any vector X e TX(M), x e M, where π α (α = l, 2) is the natural projection

M-^MΛ, the tangential map of πα is denoted by the same character, and ( , ) is

the Riemannian inner product.


