Subgroup $(SU(2) \times Spin(12))/\mathbb{Z}_2$ of compact simple Lie group E_7 and non-compact simple Lie group $E_{7,\sigma}$ of type $E_{7(-5)}$

Osami YASUKURA and Ichiro YOKOTA (Received August 20, 1981)

Introduction

It is known that there exist four simple Lie groups of type E_7 up to local isomorphism, one of them is compact and the others are non-compact. We have shown that in [3], [5] the group

$$E_{7} = \{ \alpha \in \operatorname{Iso}_{\mathbf{c}}(\mathfrak{P}^{\mathbf{c}}, \mathfrak{P}^{\mathbf{c}}) | \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$$
$$= \{ \alpha \in \operatorname{Iso}_{\mathbf{c}}(P^{\mathbf{c}}, \mathfrak{P}^{\mathbf{c}}) | \alpha \mathfrak{M}^{\mathbf{c}} = \mathfrak{M}^{\mathbf{c}}, \{ \alpha P, \alpha Q \} = \{ P, Q \}, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$$

is a simply connected compact simple Lie group of type E_7 and in [4], [5] the group

$$E_{7,\iota} = \{ \alpha \in \operatorname{Iso}_{\mathbf{c}}(\mathfrak{P}^{\mathbf{c}}, \mathfrak{P}^{\mathbf{c}}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle_{\iota} = \langle P, Q \rangle_{\iota} \}$$
$$= \{ \alpha \in \operatorname{Iso}_{\mathbf{c}}(\mathfrak{P}^{\mathbf{c}}, \mathfrak{P}^{\mathbf{c}}) \mid \alpha \mathfrak{M}^{\mathbf{c}} = \mathfrak{M}^{\mathbf{c}}, \{ \alpha P, \alpha Q \} = \{ P, Q \}, \langle \alpha P, \alpha Q \rangle_{\iota} = \langle P, Q \rangle_{\iota} \}$$

is a connected non-compact simple Lie group of type $E_{7(-25)}$ and its polar decomposition is given by

$$E_{7,i} \simeq (U(1) \times E_6) / \mathbb{Z}_3 \times \mathbb{R}^{54}$$

In this paper, we show that the group

$$E_{7,\sigma} = \{ \alpha \in \operatorname{Iso}_{\mathbf{c}}(\mathfrak{P}^{\mathbf{c}}, \mathfrak{P}^{\mathbf{c}}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle_{\sigma} = \langle P, Q \rangle_{\sigma} \}$$
$$= \{ \alpha \in \operatorname{Iso}_{\mathbf{c}}(\mathfrak{P}^{\mathbf{c}}, \mathfrak{P}^{\mathbf{c}}) \mid \alpha \mathfrak{M}^{\mathbf{c}} = \mathfrak{M}^{\mathbf{c}}, \{ \alpha P, \alpha Q \} = \{ P, Q \}, \langle \alpha P, \alpha Q \rangle_{\sigma} = \langle P, Q \rangle_{\sigma} \}$$

is a connected non-compact simple Lie group of type $E_{7(-5)}$ with the center $z(E_{7,\sigma}) = \{1, -1\}$. The polar decomposition of the group $E_{7,\sigma}$ is given by

$$E_{7,\sigma} \simeq (SU(2) \times Spin(12))/\mathbb{Z}_2 \times \mathbb{R}^{64}.$$

To give this decomposition, we find subgroups

$$SU(2)$$
, $Spin(12)$, $(SU(2) \times Spin(12))/\mathbb{Z}_2$

in the group E_7 and the group $E_{7,\sigma}$ explicitly.